koko体育app

Welcome to JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION)
GUO Huaqing, LAN Minhua, ZHANG Qiang, et al. Piezo1 Mediates the Regulation of Substrate Stiffness on Primary Cilia in Chondrocytes[J]. Journal of Sichuan University (Medical Sciences), 2024, 55(1): 67-73. DOI: 10.12182/20240160502
Citation: GUO Huaqing, LAN Minhua, ZHANG Qiang, et al. Piezo1 Mediates the Regulation of Substrate Stiffness on Primary Cilia in Chondrocytes[J]. Journal of Sichuan University (Medical Sciences), 2024, 55(1): 67-73. DOI: 10.12182/20240160502

Piezo1 Mediates the Regulation of Substrate Stiffness on Primary Cilia in Chondrocytes

  • Objective To investigate how substrate stiffness regulates the morphology of primary cilia in chondrocytes and to illustrate how Piezo1 mediates the morphology regulation of primary cilia by substrate stiffness.
    Methods Polydimethylsiloxane (PDMS) curing agent and the main agent (Dow Corning, Beijing, China) were mixed at the ratio of 1∶10 (stiff), 1∶50 (medium stiffness), and 1∶70 (soft), respectively, to prepare substrate films with the thickness of 1 mm at different levels of stiffness, including stiff substrate of (2.21±0.12) MPa, medium-stiffness substrate of (54.47±6.06) kPa, and soft substrate of (2.13±0.10) kPa. Chondrocytes were cultured with the substrates of three different levels of stiffness. Then, the cells were treated with Tubastatin A (Tub A) to inhibit histone deacetylase 6 (HDAC6), Piezo1 activator Yoda1, and inhibitor GsMTx4, respectively. The effects of HDAC6, Yoda1, and GsMTx4 on chondrocyte morphology and the length of primary cilia were analyzed through immunofluorescence staining.
    Results The stiff substrate increased the spread area of the chondrocytes. Immunofluorescence assays showed that the cytoskeleton and the nuclear area of the cells on the stiff substrate were significantly increased (P<0.05) and the primary cilia were significantly extended (P<0.05) compared with those on the medium-stiffness and soft substrates. However, the presence rate of primary cilia was not affected. The HDAC6 activity of chondrocytes increased with the decrease in substrate stiffness. When the activity of HDAC6 was inhibited, the cytoskeletal area, the nuclei area, and the primary cilium length were increased more significantly on the stiff substrate (P<0.05). Further testing showed that Piezo1 activator and inhibitor could regulate the activity of HDAC6 in chondrocytes, and that the length of primary cilia was significantly increased after treatment with the activator Yoda1 (P<0.05). On the other hand, the length of primary cilia was significantly shortened on the stiff substrate after treatment with the inhibitor GsMTx4 (P<0.05).
    Conclusion Both substrate stiffness and Piezo1 may affect the morphology of chondrocyte primary cilia by regulating HDAC6 activity.
  • loading
  • Copyright ©2024 Editorial Board of Journal of Sichuan University (Medical Sciences) cc

    OPEN ACCESS This article is♏ licensed under a Creative Commons Attribution-NonCommercial 4.0 Internat🅘ional license (CC BY-NC 4.0). In other words, the full-text content of the journal is made freely available for third-party users to copy and redistribute in any medium or format, and to remix, transform, and build upon the content of the journal. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may not use the content of the journal for commercial purposes. For more information about the license, visit

Catalog

    /

    Return
    Return
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!