koko体育app

欢迎来到《koko体育app 学报(医学版)》
赵春林, 胡诗琪, 贺婷婷, 等. 基于ResNet网络模型的手术切口常见特征的识别[J]. koko体育app 学报(医学版), 2023, 54(5): 923-929. doi: 10.12182/20230960303
引用本文: 赵春林, 胡诗琪, 贺婷婷, 等. 基于ResNet网络模型的手术切口常见特征的识别[J]. koko体育app 学报(医学版), 2023, 54(5): 923-929. doi:
ZHAO Chunlin, HU Shiqi, HE Tingting, et al. Deep Learning-Based Identification of Common Complication Features of Surgical Incisions[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(5): 923-929. doi: 10.12182/20230960303
Citation: ZHAO Chunlin, HU Shiqi, HE Tingting, et al. Deep Learning-Based Identification of Common Complication Features of Surgical Incisions[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(5): 923-929. doi:

基于ResNet网络模型的手术切口常见特征的识别

doi: 
基金项目: koko体育app 华西护理学科发展专项基金(No. HXHL21047)和四川省自然科学基金面上项目(No. 23NSFSC0880)资助
详细信息
    通讯作者:

    E-mail:lilingli2000@126.com

Deep Learning-Based Identification of Common Complication Features of Surgical Incisions

More Information
  • 摘要:   目的  近年来由于加速康复外科及日间手术在外科领域的发展,使得患者平均住院日缩短,术后手术切口需居家康复,为及时发现伤口存在的问题,预防或减轻患者出院后的焦虑,本研究利用深度学习的方法对手术切口常见并发症的特征进行分类,期望实现以患者为主导的手术切口常见并发症的早期识别。  方法  收集2021年6月−2022年3月某三甲医院手术后患者的切口图像1224张,根据并发症特征进行分类整理,并将其按8∶1∶1的比例分为训练集、验证集和测试集,使用4种卷积神经网络分别进行模型的训练与测试。  结果  通过多种卷积神经网络的训练,并在基于300张手术切口图像测试集的基础上进行模型性能的测试,4种ResNet分类网络模型SE-ResNet101、ResNet50、ResNet101、SE-ResNet50的手术切口分类平均准确率分别为0.941、0.903、0.896、0.918,精确率分别为0.939、0.898、0.868、0.903,召回率分别为0.930、0.880、0.850、0.894,其中以SE-Resnet101网络模型切口特征分类平均准确率最高,达到0.941。  结论  将深度学习和手术切口图像相结合的方式,能通过手术切口图像对手术切口的问题特征进行有效识别,最终有望实现患者智能终端手术切口自检。
  • koko体育app

    图  1  7种手术切口特征类别样例

    Figure  1.  Examples for 7 categories of complication features ꦯof surgical incisions

    图  2  手术切口特征分类模型的研究框架

    Figure  2.  Research framework of the surgical incision complication classif🌸ication model

    FC: full connected.

    图  3  原图与截取后的图像对比

    Figure  3.  The original image c⛎ompared with the cropped images

    Base, Base image; 1, cropped image 1; 2, cropped image; 3, cropped image 3.

    图  4  数据增强图例

    Figure  4.  Examples of data enhancement

    A, Original image; B, horizontal mirror image; C, vertical mirror image; D, horizontal and vertical mirroring image; E, 90 degree rotation image.

    图  5  各模型训练集准确率变化图

    Figure  5.  Changes in the accuracy of the results of each model for the🅘 training set

    表  1  各网络训练参数

    Table  1.   Training parameters of each network

    ParameterValue
    Input size 224×224×3
    Batch size 32
    Learning rate 0.0001
    Epoch 35
    Optimizer Adam
    Loss function CE loss
    下载: 导出CSV

    表  2  ResNet50与ResNet101模型架🐷构对比(“fc”表示SE模块中的全连接层)

    Table  2.   Comparison of ResNet50 and RওesNet💛101 model architecture tables ("fc" represents the fully connected layer in the SE module)

    Layer
    name
    Output
    size
    ResNet50ResNet101
    conv1112×112conv, 7×7, 64, stride 2
    max pool, 3×3, stride 2
    conv2_x56×56$\left[ {\begin{array}{*{20}{c}} {conv, \;1 \times 1, \;64} \\ {conv, \;3 \times 3, \;64} \\ {conv, \;1 \times 1, \;256} \end{array}} \right] \times 3 $$\left[ {\begin{array}{*{20}{c}} {conv, \;1 \times 1, \;64} \\ {conv, \;3 \times 3, \;64} \\ {conv, \;1 \times 1, \;256} \\ {fc, \;\left[ {16, \;256} \right]} \end{array}} \right] \times 3 $
    conv3_x28×28$\left[ {\begin{array}{*{20}{c}} {conv, \;1 \times 1, \;128} \\ {conv, \;3 \times 3, \;128} \\ {conv, \;1 \times 1, \;512} \end{array}} \right] \times 4 $$\left[ {\begin{array}{*{20}{c}} {conv, \;1 \times 1, \;128} \\ {conv, \;3 \times 3, \;128} \\ {conv, \;1 \times 1, \;512} \\ {fc, \;\left[ {32, \;512} \right]} \end{array}} \right] \times 4 $
    conv4_x14×14$\left[ {\begin{array}{*{20}{c}} {conv, \;1 \times 1, \;256} \\ {conv, \;3 \times 3, \;256} \\ {conv, \;1 \times 1, \;1\;024} \end{array}} \right] \times 23 $$\left[ {\begin{array}{*{20}{c}} {conv, \;1 \times 1, \;256} \\ {conv, \;3 \times 3, \;256} \\ {conv, \;1 \times 1, \;1\;024} \\ {fc, \;\left[ {64, \;1\;024} \right]} \end{array}} \right] \times 23 $
    conv5_x7×7$\left[ {\begin{array}{*{20}{c}} {conv, \;1 \times 1, \;512} \\ {conv, \;3 \times 3, \;512} \\ {conv, \;1 \times 1, \;2\;048} \end{array}} \right] \times 3 $$\left[ {\begin{array}{*{20}{c}} {conv, \;1 \times 1, \;512} \\ {conv, \;3 \times 3, \;512} \\ {conv, \;1 \times 1, \;2\;048} \\ {fc, \;\left[ {128, \;2\;048} \right]} \end{array}} \right] \times 3 $
    1×1global average pool, 1000-d fc, softmax
    下载: 导出CSV

    表  3  原始数据集中训练集、验证集与测试集分布(n=1925)

    Table  3.   Distribution of the training set, validation set, and test set in the original dataset (n=1925)

    SetSurgical incision complication feature categories/caseTotal
    No abnormalityRedness and swellingPurulenceScabTension blistersSkin ecchymosis
    around incision
    Wound dehiscence
    Training set31631675101872371951327
    Valid set39383750435041298
    Test set38363851445142300
    Total3933901502021743382781925
    下载: 导出CSV

    表  4  数据增强后的训练集、验证集与测试集分布(n=3022)

    Table  4.   Distribution of training set, verification set and test set after data enhancement (n=3022)

    SetSurgical incision feature categories/caseTotal
    No abnormalityRedness and swellingPurulenceScabsTension blistersSkin ecchymosis
    around incision
    Wound dehiscence
    Training set3163163004043484063342424
    Valid set39383750435041298
    Test set38363851445142300
    Total3933903755054355074173022
    下载: 导出CSV

    表  5  4种模型数据集的分类结果

    Table  5.   The dataset classification results of the 4 🅘mod🎶els

    ModelMean-accuracyAccuracyPrecisionRecallF1-score
    ResNet500.9030.8900.8980.8800.884
    ResNet1010.8960.8600.8680.8500.854
    SE-ResNet500.9180.9000.9030.8940.896
    SE-ResNet1010.9410.9370.9390.9300.932
    下载: 导出CSV
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] 魏来, 陈楠, 杨晔, 等. 2019年度中国微创心血管外科手术统计. 中国胸心血管外科临床杂志,2021,28(2): 149–153. doi:
    [2] 张继芝, 李秀娥, 徐玉芝, 等. 多学科合作加速康复外科工作模式下的护理管理实践及效果评价. 中国护理管理,2018,18(4): 546–552. doi:
    [3] 嵇武, 刘亚萍, 戴玮. 我国日间手术开展现状与前景展望. 中国实用外科杂志,2020,40(2): 199–202. doi:
    [4] WANG P, HUANG B, YEH C, et al. Wound healing. J Chin Med Assoc,2018,81(2): 94–101. doi:
    [5] PIEPER B, SIEGGREEN M, NORDSTROM C K, et al. Discharge knowledge and concerns of patients going home with a wound. J Wound Ostomy Continence Nurs,2007,34(3): 245–253. doi:
    [6] SANGER P C, HARTZLER A, HAN S M, et al. Patient perspectives on post-discharge surgical site infections: towards a patient-centered mobile health solution. PLoS One,2014,9(12): e114016. doi:
    [7] TANDON S, QIN K R, NATARAJA R M, et al. Surgical wound care: a survey of parental knowledge and expectations. J Pediatr Surg,2019,54(12): 2606–2613. doi:
    [8] WAHL T S, HAWN M T. How to predict 30-day readmission. Adv Surg,2018,52(1): 101–111. doi:
    [9] SREEDHARAN S, NEMETH L S, HIRSCH J, et al. Patient and provider preferences for monitoring surgical wounds using an mhealth app: a formative qualitative analysis. Surg Infect (Larchmt),2022,23(2): 168–173. doi:
    [10] 贺育华, 杨婕, 蒋理立. 加速康复外科模式下结直肠癌患者出院30天内非计划性再入院影响因素分析. 中国普外基础与临床杂志,2021,28(10): 1334–1339. doi:
    [11] HILLS J, SIVAGANESAN A, KHAN I, et al. Causes and timing of unplanned 90-day readmissions following spine surgery. Spine,2018,43(14): 991–998. doi:
    [12] WOELBER E, SCHRICK E J, GESSNER B D, et al. Proportion of surgical site infections occurring after hospital discharge: a systematic review. Surg Infect (Larchmt),2016,17(5): 510–519. doi:
    [13] MERKOW R P, JU M H, CHUNG J W, et al. Underlying reasons associated with hospital readmission following surgery in the United States. JAMA,2015,313(5): 483–495. doi:
    [14] JIANG Y, HUANG S, FU X, et al. Epidemiology of chronic cutaneous wounds in China. Wound Repair Regen,2011,19(2): 181–188. doi:
    [15] HUANG Z, WU S, YU T, et al. Efficacy of telemedicine for patients with chronic wounds: a meta-analysis of randomized controlled trials. Adv Wound Care,2021,10(2): 103–112. doi:
    [16] HWA K, WREN S M. Telehealth follow-up in lieu of postoperative clinic visit for ambulatory surgery: results of a pilot program. JAMA Surg,2013,148(9): 823–827. doi:
    [17] GUNTER R L, FERNANDES-TAYLOR S, RAHMAN S, et al. Feasibility of an image-based mobile health protocol for postoperative wound monitoring. J Am Coll Surg,2018,226(3): 277–286. doi:
    [18] HOLMES J H, SACCHI L, BELLAZZI R, et al. Artificial intelligence in medicine AIME 2015. Artif Intell Med,2017,81: 1–2. doi:
    [19] WANG L, PEDERSEN P C, AGU E, et al. Area determination of diabetic foot ulcer images using a cascaded two-stage SVM-based classification. IEEE Trans Biomed Eng,2016,64(9): 2098–2109. doi:
    [20] ROSTAMI B, ANISUZZAMAN D M, WANG C, et al. Multiclass wound image classification using an ensemble deep CNN-based classifier. Comput Biol Med,2021,134: 104536. doi:
    [21] SHENOY V N, FOSTER E, AALAMI L, et al. Deepwound: automated postoperative wound assessment and surgical site surveillance through convolutional neural networks//2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Madrid: IEEE, 2018: 1017−1021.
    [22] WU J M, TSAI C J, HO T W, et al. A unified framework for automatic detection of wound infection with artificial intelligence. Applied Sciences,2020,10(15): 5353. doi:
    [23] BOWEN A C, BURNS K, TONG S Y C, et al. Standardising and assessing digital images for use in clinical trials: a practical, reproducible method that blinds the assessor to treatment allocation. PLoS One,2014,9(11): e110395. doi:
    [24] SANDY-HODGETTS K, WATTS R. Effectiveness of negative pressure wound therapy/closed incision management in the prevention of post-surgical wound complications: a systematic review and meta-analysis. JBI Database System Rev Implement Rep,2015,13(1): 253–303. doi:
    [25] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016:770−778. doi: .
    [26] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks. IEEE Trans Pattern Anal Mach Intell,2020,42(8): 2011–2023. doi:
    [27] DING S, LIN F, GILLESPIE B M. Surgical wound assessment and documentation of nurses: an integrative review. J Wound Care,2016,25(5): 232–240. doi:
    [28] 康焱, 周宗科, 杨惠林, 等. 中国骨科手术加速康复切口管理指南. 中华骨与关节外科杂志,2018,11(1): 3–10. doi:
    [29] SANDY-HODGETTS K, WATTS R. Effectiveness of negative pressure wound therapy/closed incision management in the prevention of post-surgical wound complications: a systematic review and meta-analysis. JBI Evid Synth,2015,13(1): 253–303. doi:
    [30] FILKO D, MARIJANOVIĆ D, NYARKO E K. Automatic robot-driven 3D reconstruction system for chronic wounds. Sensors,2021,21(24): 8308. doi:
    [31] RAMIREZ-GARCIALUNA J L, BARTLETT R, ARRIAGA-CABALLERO J E, et al. Infrared thermography in wound care, surgery, and sports medicine: a review. Front Physiol,2022,13: 210. doi:
  • 加载中
© 2023《杭州学校学报(医美版)》编缉部 邻接权各种

开放式获利 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC ๊4.0许可协议详情请访问 //creativecommons.org/licenses/by-nc/4.0

图(5) / 表(5)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 修回日期:  2024-09-11
  • 刊出日期:  2024-10-13

目录

    /

    koko体育app: 返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!