-
摘要: 液-液相分离作为一种细胞结构的组织与形成的新机制,在调控细胞命运转变和疾病发病机制中发挥着重要作用,正受到广泛关注。液-液相分离可形成一些具有液态流动性的细胞结构,如生殖颗粒、压力应激颗粒和核仁等经典的无膜细胞器,它们通常由生物大分子通过弱的多价相互作用形成的高浓度液体聚集而来。液-液相分离可参与调节细胞内的多种生命活动,其异常则会导致细胞功能紊乱,从而促进神经退行性疾病、传染病及癌症等疾病的发生发展。本综述通过总结各种无膜细胞器在生理与病理性细胞命运转变过程中的液-液相分离动态,揭示了它们在细胞分化、发育及各种疾病发生过程中的关键作用,为液-液相分离相关研究提供了新的理论框架和潜在的疾病治疗靶点,为未来的研究提供了新的方向。
-
关键词:
- koko体育app: 相分离 /
- 细胞命运转变 /
- koko体育app: 疾病发病机制 /
- koko体育app: 治疗策略 /
- koko体育app: 综述
Abstract: Liquid-liquid phase separation (LLPS), a novel mechanism of the organization and formation of cellular structures, plays a vital role in regulating cell fate transitions and disease pathogenesis and is gaining widespread attention. LLPS may lead to the assemblage of cellular structures with liquid-like fluidity, such as germ granules, stress granules, and nucleoli, which are classic membraneless organelles. These structures are typically formed through the high-concentration liquid aggregation of biomacromolecules driven by weak multivalent interactions. LLPS is involved in regulating various intracellular life activities and its dysregulation may cause the disruption of cellular functions, thereby contributing to the pathogenesis and development of neurodegenerative diseases, infectious diseases, cancers, etc. Herein, we summarized published findings on the LLPS dynamics of membraneless organelles in physiological and pathological cell fate transition, revealing their crucial roles in cell differentiation, development, and various pathogenic processes. This paper provides a fresh theoretical framework and potential therapeutic targets for LLPS-related studies, opening new avenues for future research. -
[1] ATLASI Y, STUNNENBERG H G. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet,2017,18(11): 643–658. doi: [2] GROSCH M, ITTERMANN S, SHAPOSHNIKOV D, et al. Chromatin-associated membraneless organelles in regulation of cellular differentiation. Stem Cell Reports,2020,15(6): 1220–1232. doi: [3] SO C, CHENG S, SCHUH M. Phase separation during germline development. Trends Cell Biol,2021,31(4): 254–268. doi: [4] ZHENG H, XIE W. The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol,2019,20(9): 535–550. doi: [5] SABARI B R, DALL'AGNESE A, YOUNG R A. Biomolecular condensates in the nucleus. Trends Biochem Sci,2020,45(11): 961–977. doi: [6] PROTTER D, PARKER R. Principles and properties of stress granules. Trends Cell Biol,2016,26(9): 668–679. doi: [7] BANANI S F, LEE H O, HYMAN A A, et al. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol,2017,18(5): 285–298. doi: [8] BOIJA A, KLEIN I A, SABARI B R, et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell,2018,175(7): 1842–1855.e16. doi: [9] CHO W K, SPILLE J H, HECHT M, et al. Mediator and RNA polymerase Ⅱ clusters associate in transcription-dependent condensates. Science,2018,361(6400): 412–415. doi: [10] SABARI B R, DALL'AGNESE A, BOIJA A, et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science,2018,361(6400): eaar3958. doi: [11] BOIJA A, KLEIN I A, YOUNG R A. Biomolecular condensates and cancer. Cancer Cell,2021,39(2): 174–192. doi: [12] LIU X, SHEN J, XIE L, et al. Mitotic implantation of the transcription factor Prospero via phase separation drives terminal neuronal differentiation. Dev Cell,2020,52(3): 277–293.e8. doi: [13] QUIROZ F G, FIORE V F, LEVORSE J, et al. Liquid-liquid phase separation drives skin barrier formation. Science,2020,367(6483): eaax9554. doi: [14] SPANNL S, TERESHCHENKO M, MASTROMARCO G J, et al. Biomolecular condensates in neurodegeneration and cancer. Traffic,2019,20(12): 890–911. doi: [15] AHN J H, DAVIS E S, DAUGIRD T A, et al. Phase separation drives aberrant chromatin looping and cancer development. Nature,2021,595(7868): 591–595. doi: [16] TRCEK T, LEHMANN R. Germ granules in Drosophila. Traffic,2019,20(9): 650–660. doi: [17] BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science,2009,324(5935): 1729–1732. doi: [18] LAFONTAINE D, RIBACK J A, BASCETIN R, et al. The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol,2021,22(3): 165–182. doi: [19] BERRY J, WEBER S C, VAIDYA N, et al. RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A,2015,112(38): E5237–5245. doi: [20] FALAHATI H, PELHAM-WEBB B, BLYTHE S, et al. Nucleation by rRNA dictates the precision of nucleolus assembly. Curr Biol,2016,26(3): 277–285. doi: [21] ZATSEPINA O, BALY C, CHEBROUT M, et al. The step-wise assembly of a functional nucleolus in preimplantation mouse embryos involves the cajal (coiled) body. Dev Biol,2003,253(1): 66–83. doi: [22] MACHYNA M, HEYN P, NEUGEBAUER K M. Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA,2013,4(1): 17–34. doi: [23] HEYN P, SALMONOWICZ H, RODENFELS J, et al. Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos. RNA Biol,2017,14(6): 752–760. doi: [24] STRZELECKA M, OATES A C, NEUGEBAUER K M. Dynamic control of Cajal body number during zebrafish embryogenesis. Nucleus,2010,1(1): 96–108. doi: [25] TATOMER D C, TERZO E, CURRY K P, et al. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J Cell Biol,2016,213(5): 557–570. doi: [26] DODSON A E, KENNEDY S. Phase separation in germ cells and development. Dev Cell,2020,55(1): 4–17. doi: [27] BONTEMS F, STEIN A, MARLOW F, et al. Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol,2009,19(5): 414–422. doi: [28] MARLOW F L, MULLINS M C. Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Dev Biol,2008,321(1): 40–50. doi: [29] SCHUMACHER B, POTHOF J, VIJG J, et al. The central role of DNA damage in the ageing process. Nature,2021,592(7856): 695–703. doi: [30] SHOJI M, TANAKA T, HOSOKAWA M, et al. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell,2009,17(6): 775–787. doi: [31] ARAVIN A A, Van Der HEIJDEN G W, CASTAÑEDA J, et al. Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet,2009,5(12): e1000764. doi: [32] DANESHVAR K, ARDEHALI M B, KLEIN I A, et al. lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation. Nat Cell Biol,2020,22(10): 1211–1222. doi: [33] KUANG J, ZHAI Z, LI P, et al. SS18 regulates pluripotent-somatic transition through phase separation. Nat Commun,2021,12(1): 4090. doi: [34] RODEN C, GLADFELTER A S. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol,2021,22(3): 183–195. doi: [35] QUINODOZ S A, JACHOWICZ J W, BHAT P, et al. RNA promotes the formation of spatial compartments in the nucleus. Cell,2021,184(23): 5775–5790.e30. doi: [36] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell,2006,126(4): 663–676. doi: [37] WANG J, YU H, MA Q, et al. Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell,2021,28(10): 1868–1883.e11. doi: [38] Di GIAMMARTINO D C, KLOETGEN A, POLYZOS A, et al. KLF4 is involved in the organization and regulation of pluripotency-associated three-dimensional enhancer networks. Nat Cell Biol,2019,21(10): 1179–1190. doi: [39] NARITA M, NŨNEZ S, HEARD E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell,2003,113(6): 703–716. doi: [40] SATI S, BONEV B, SZABO Q, et al. 4D genome rewiring during oncogene-induced and replicative senescence. Mol Cell,2020,78(3): 522–538.e9. doi: [41] ODA T, GOTOH N, KASAMATSU T, et al. DNA damage-induced cellular senescence is regulated by 53BP1 accumulation in the nuclear foci and phase separation. Cell Prolif,2023,56(6): e13398. doi: [42] SAMIR P, KESAVARDHANA S, PATMORE D M, et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature,2019,573(7775): 590–594. doi: [43] SAMIR P, KANNEGANTI T D. DDX3X sits at the crossroads of liquid-liquid and prionoid phase transitions arbitrating life and death cell fate decisions in stressed cells. DNA Cell Biol,2020,39(7): 1091–1095. doi: [44] LIU H. Phase separation and cell fate in Candida. Nat Microbiol,2020,5(11): 1314–1315. doi: [45] FRAZER C, STAPLES M I, KIM Y, et al. Epigenetic cell fate in Candida albicans is controlled by transcription factor condensates acting at super-enhancer-like elements. Nat Microbiol,2020,5(11): 1374–1389. doi: [46] JUCKER M, WALKER L C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature,2013,501(7465): 45–51. doi: [47] SPILLANTINI M G, SCHMIDT M L, LEE V M, et al. Alpha-synuclein in Lewy bodies. Nature,1997,388(6645): 839–840. doi: [48] PESKETT T R, RAU F, O'DRISCOLL J, et al. A liquid to solid phase transition underlying pathological huntingtin exon1 aggregation. Mol Cell,2018,70(4): 588–601.e6. doi: [49] AULAS A, VANDE VELDE C. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS. Front Cell Neurosci,2015,9: 423. doi: [50] ELBAUM-GARFINKLE S. Matter over mind: liquid phase separation and neurodegeneration. J Biol Chem,2019,294(18): 7160–7168. doi: [51] DOLNIK O, GERRESHEIM G K, BIEDENKOPF N. New perspectives on the biogenesis of viral inclusion bodies in negative-sense RNA virus infections. Cells,2021,10(6): 1460. doi: [52] CHARMAN M, WEITZMAN M D. Replication compartments of DNA viruses in the nucleus: location, location, location. Viruses,2020,12(2): 151. doi: [53] JOBE F, SIMPSON J, HAWES P, et al. Respiratory syncytial virus sequesters NF-κB subunit p65 to cytoplasmic inclusion bodies to inhibit innate immune signaling. J Virol,2020,94(22): e01380–01320. doi: [54] DINH P X, BEURA L K, DAS P B, et al. Induction of stress granule-like structures in vesicular stomatitis virus-infected cells. J Virol,2013,87(1): 372–383. doi: [55] FRICKE J, KOO L Y, BROWN C R, et al. p38 and OGT sequestration into viral inclusion bodies in cells infected with human respiratory syncytial virus suppresses MK2 activities and stress granule assembly. J Virol,2013,87(3): 1333–1347. doi: [56] LARSON J D, KASPER L H, PAUGH B S, et al. Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression. Cancer Cell,2019,35(1): 140–155.e7. doi: [57] LU C, JAIN S U, HOELPER D, et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science,2016,352(6287): 844–849. doi: [58] MANSOUR M R, ABRAHAM B J, ANDERS L, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science,2014,346(6215): 1373–1377. doi: [59] BASU S, MACKOWIAK S D, NISKANEN H, et al. Unblending of transcriptional condensates in human repeat expansion disease. Cell,2020,181(5): 1062–1079.e30. doi: [60] FASCIANI A, D'ANNUNZIO S, POLI V, et al. MLL4-associated condensates counterbalance polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nat Genet,2020,52(12): 1397–1411. doi: [61] WANG L, HU M, ZUO M Q, et al. Rett syndrome-causing mutations compromise MeCP2-mediated liquid-liquid phase separation of chromatin. Cell Res,2020,30(5): 393–407. doi: [62] BERG T, COHEN S B, DESHARNAIS J, et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci U S A,2002,99(6): 3830–3835. doi: [63] ERKIZAN H V, KONG Y, MERCHANT M, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat Med,2009,15(7): 750–756. doi: [64] ZHU G, XIE J, FU Z, et al. Pharmacological inhibition of SRC-1 phase separation suppresses YAP oncogenic transcription activity. Cell Res,2021,31(9): 1028–1031. doi: [65] GUPTA N, BADEAUX M, LIU Y, et al. Stress granule-associated protein G3BP2 regulates breast tumor initiation. Proc Natl Acad Sci U S A,2017,114(5): 1033–1038. doi: [66] LIU J, XIE Y, GUO J, et al. Targeting NSD2-mediated SRC-3 liquid-liquid phase separation sensitizes bortezomib treatment in multiple myeloma. Nat Commun,2021,12(1): 1022. doi: [67] SINGATULINA A S, HAMON L, SUKHANOVA M V, et al. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rep,2019,27(6): 1809–1821.e5. doi: -
© 2023《甘肃院校学报(医药学版)》复制部 版权登记拥有
开启更改 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,ཧ提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 //creativecommons.org/licenses/by-nc/4.0

计量
- 文章访问数: 9
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0