koko体育app

欢迎来到《koko体育app 学报(医学版)》
大的规模用户链表生话现象方案对应的肺肿瘤概率預测模板的实现

陈睿琳 王静茹 王硕 koko体育app: 唐思琦 koko体育app: 索晨

陈睿琳, 王静茹, 王硕, 等. 大规模人群队列生活行为方式相关的肺癌风险预测模型的构建[J]. koko体育app 学报(医学版), 2023, 54(5): 892-898. doi: 10.12182/20230960209
引用本文: 陈睿琳, 王静茹, 王硕, 等. 大规模人群队列生活行为方式相关的肺癌风险预测模型的构建[J]. koko体育app 学报(医学版), 2023, 54(5): 892-898. doi:
CHEN Ruilin, WANG Jingru, WANG Shuo, et al. Construction of a Risk Prediction Model for Lung Cancer Based on Lifestyle Behaviors in the UK Biobank Large-Scale Population Cohort[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(5): 892-898. doi: 10.12182/20230960209
Citation: CHEN Ruilin, WANG Jingru, WANG Shuo, et al. Construction of a Risk Prediction Model for Lung Cancer Based on Lifestyle Behaviors in the UK Biobank Large-Scale Population Cohort[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(5): 892-898. doi:

大规模人群队列生活行为方式相关的肺癌风险预测模型的构建

doi: 
基金项目: 国家重点研发计划项目(No. 2022YFC3400700、No. 2019YFC1315804),上海市公共卫生体系建设三年行动计划优秀人才项目(No. GWV-10.2-YQ32),上海市市级科技重大专项(No. ZD2021CY001)和上海科技委员会创新基金(No. 20ZR1405600)资助
详细信息
    通讯作者:

    E-mail:koko体育app:suochen@fudan.edu.cn

Construction of a Risk Prediction Model for Lung Cancer Based on Lifestyle Behaviors in the UK Biobank Large-Scale Population Cohort

More Information
  • 摘要:   目的  发现影响肺癌发病的生活行为相关危险因素,并构建肺癌风险预测模型,识别人群中的高风险个体,帮助肺癌早期筛查。  方法  本研究数据来源于英国生物样本库(UK Biobank)2006年3月–2010年10月收集的502389名参与者。参考国内外肺癌筛查指南和高质量肺癌危险因素研究文献,确定本研究高危人群识别标准。采用单因素Cox回归分析及逐步回归筛选出肺癌的危险因素,通过Cox比例风险回归构建多因素肺癌风险预测模型,根据比较赤池信息准则以及Schoenfeld残差检验结果,最终选择等比例假设的最优拟合模型。多因素Cox比例风险回归考虑生存时间,将人群按7∶3的比例随机分为训练集和验证集,使用训练集建立模型,并用验证集对模型性能进行内部验证。受试者工作特征曲线(ROC)曲线的曲线下面积(AUC)被用于评估模型的效能。将人群按照发病概率的0%~<25%、25%~<75%、75%~100%分为低风险、中风险及高风险人群,分别计算其中的发病人数占比。  结果  本研究最终纳入453558人,在累计随访5505402人年期间,共诊断出2330例肺癌。Cox比例风险回归分析筛选出10个自变量建立模型:年龄、体质量指数(body mass index, BMI)、学历、收入、体力活动情况、吸烟状态、饮酒频率、新鲜水果摄入量、癌症家族史、烟草暴露。该模型通过内部验证结果显示8个自变量(除BMI和新鲜水果摄入量外)均是肺癌的影响因素( P<0.05)。该模型训练集预测肺癌发生的一年、五年、十年AUC分别为0.825、0.785、0.777;验证集预测肺癌发生的一年、五年、十年AUC分别为0.857、0.782、0.765。筛查高风险人群可发现68.38%的未来肺癌发病个体。  结论  本研究建立了大规模人群生活行为方式相关的肺癌风险预测模型,其在判别能力方面表现出良好的性能,为制定肺癌标准化筛查策略提供了工具。
  • koko体育app

    图  1  危险因素筛选流程

    Figure  1.  Risk factor screening process

    图  2  训练集(左)和验证集(右)ROC曲线分析结果

    Figure  2.  ROC curve aꦺnalysis results of the training set (left) and the t𝐆est set (right)

    表  1  统计学特征及Cox回归分析

    Table  1.   Sꦆtatistical characteristics and Cox regression analysis

    VariableLung
    cancer/case,
    n=2330
    No lung
    cancer/case,
    n=451228
    Incidence/
    Univariable CoxMultivariate Cox
    HR (95% CI)PHR (95% CI)P
    Age/yr.
     40-49 91 111462 0.82 Reference Reference
     50-64 1347 259088 5.17 6.55 (5.06-8.46) <0.001 5.43 (3.39-8.69) <0.001
     ≥65 892 80678 10.94 14.46 (11.14-18.76) <0.001 11.36 (6.95-18.56) <0.001
    Sex
     Female 1045 240686 4.32 Reference
     Male 1285 210542 6.07 1.43 (1.3-1.58) <0.001
    Body mass index/(kg/m2)
     <18.5 52 4537 11.33 Reference Reference
     18.5-24.9 724 145402 4.95 0.47 (0.33-0.66) <0.001 3.46 (0.48-24.77) 0.22
     25.0-29.9 971 191225 5.05 0.48 (0.34-0.67) <0.001 3.11 (0.44-22.23) 0.26
     >29.9 583 110064 5.27 0.48 (0.34-0.68) <0.001 2.61 (0.36-18.73) 0.34
    Qualifications
     College or university degree 362 147542 2.45 Reference Reference
     A levels/AS levels or equivalent 181 50323 3.58 1.62 (1.31-1.99) <0.001 1.66 (1.23-2.23) <0.001
     O levels/GCSEs or equivalent 424 94697 4.46 1.87 (1.58-2.21) <0.001 1.57 (1.22-2.03) <0.001
     CSEs or equivalent 77 24866 3.09 1.28 (0.95-1.72) 0.105 1.11 (0.65-1.88) 0.71
     NVQ, or HND, or HNC, or the equivalent 207 29622 6.94 2.95 (2.41-3.62) <0.001 1.71 (1.22-2.38) <0.001
     Other professional qualifications 117 22960 5.07 2.06 (2.41-2.65) <0.001 1.55 (1.06-2.25) 0.02
     Missing data 962 81218 11.71
    Income/(£/year)
     <18000 826 85352 9.58 Reference Reference
     18000-30999 564 96737 5.80 0.62 (0.54-0.70) <0.001 1.02 (0.79-1.32) 0.90
     31000-51999 299 101496 2.94 0.32 (0.27-0.37) <0.001 0.87 (0.66-1.16) 0.35
     52000-100000 146 80277 1.82 0.19 (0.16-0.24) <0.001 0.63 (0.44-0.89) <0.001
     >100000 39 21455 1.81 0.17 (0.11-0.26) <0.001 0.83 (0.49-1.41) 0.50
     Missing data 456 65911 6.87
    Ethnicity
     White 2250 423934 5.28 Reference
     Not white 70 25677 2.72 0.46 (0.34-0.62) <0.001
     Missing data 10 1617 6.15
    International Physical Activity Questionnaires activity group
     Low 417 68539 6.05 Reference Reference
     Moderate 687 148113 4.62 0.78 (0.67-0.90) 0.001 0.75 (0.58-0.95) 0.02
     High 639 147235 4.32 0.73 (0.63-0.85) <0.001 0.61 (0.47-0.79) <0.001
     Missing data 587 87341 6.68
    Smoking status
     Never 308 249020 1.24 Reference Reference
     Previous 1029 153457 6.66 5.70 (4.89-6.64) <0.001 3.74 (2.98-4.68) <0.001
     Current 975 47071 20.29 16.93 (14.51-19.76) <0.001 3.23 (1.98-5.29) <0.001
     Missing data 18 1680 10.60
    Cooked vegetables intake/(tablespoon/d)
     <3 1177 230290 5.08 Reference
     3 604 120535 4.99 0.98 (0.87-1.10) 0.691
     >3 506 94436 5.33 1.08 (0.96-1.23) 0.195
     Missing data 43 5967 7.15
    Salad/Raw vegetables intake/(tablespoon/d)
     <3 1657 305853 5.39 Reference
     3 270 62888 4.27 0.80 (0.69-0.93) 0.004
     >3 345 76357 4.50 0.83 (0.72-0.95) 0.007
     Missing data 58 6130 9.37
    Fresh fruit intake/(pieces/d)
     <3 1651 286932 5.72 Reference Reference
     3 352 89765 3.91 0.66 (0.57-0.76) <0.001 0.80 (0.61-1.03) 0.08
     >3 298 72558 4.09 0.75 (0.65-0.87) <0.001 1.05 (0.82-1.36) 0.69
     Missing data 29 1973 14.49
    Meat intake/ (tablespoon/d)
     <1 725 178138 4.05 Reference
     1 677 131150 5.14 1.21 (1.06-1.37) 0.003
     >1 923 140841 6.51 1.59 (1.41-1.78) <0.001
     Missing data 5 1099 4.53
    Cheese intake/(tablespoon/d)
     <1 509 88452 5.72 Reference
     1 543 94305 5.72 1.04 (0.90-1.20) 0.635
     >1 1198 257268 4.64 0.85 (0.75-0.96) 0.011
     Missing data 80 11203 7.09
    Alcohol drinker status
     Never 78 20245 3.84 Reference
     Previous 186 15949 11.53 3.26 (2.34-4.54) <0.001
     Current 2063 414475 4.95 1.45 (1.09-1.93) 0.010
     Missing data 3 559 5.34
    Alcohol drinking status/(day/week)
     >4 577 91413 6.27 Reference Reference
     1-4 974 221206 4.38 0.69 (0.61-0.78) <0.001 0.79 (0.63-1.00) 0.04
     <1 776 138186 5.58 0.88 (0.77-1.00) 0.052 1.06 (0.81-1.38) 0.67
     Missing data 3 423 7.04
    Worries/anxious feelings
     No 1023 191389 5.32 Reference
     Yes 1229 247351 4.94 0.89 (0.81-0.98) 0.021
     Missing data 78 12488 6.21
    Apolipoprotein A
     Low 9 663 13.39 Reference
     Moderate 1974 375222 5.23 0.38 (0.17-0.85) 0.019
     High 42 12017 3.48 0.26 (0.11-0.62) 0.003
     Missing data 305 63326 4.79
    Apolipoprotein B
     Low 2 255 7.78 Reference
     Moderate 1697 325484 5.19 0.90 (0.13-6.41) 0.918
     High 472 96954 4.84 0.83 (0.12-5.94) 0.857
     Missing data 159 559 221.45
    High-density lipoprotein
     Low 500 70339 7.06 Reference
     Moderate 971 184553 5.23 0.73 (0.65-0.84) <0.001
     High 562 135067 4.14 0.60 (0.52-0.69) <0.001
     Missing data 297 61269 4.82
    Low-density lipoprotein
     Low 155 15239 10.07 Reference
     Moderate 710 117309 6.02 0.65 (0.52-0.80) <0.001
     High 1313 291491 4.48 0.48 (0.39-0.59) <0.001
     Missing data 152 27189 5.56
    Total cholesterol
     Low 13 1181 10.89 Reference
     Moderate 916 145186 6.27 0.56 (0.29-1.09) 0.088
     High 1253 278430 4.48 0.40 (0.21-0.78) 0.007
     Missing data 148 26431 5.57
    Triacylglycerol
     Low 21 6735 3.11 Reference
     Moderate 1123 248222 4.50 1.37 (0.83-2.24) 0.215
     High 1036 169510 6.07 1.75 (1.07-2.88) 0.026
     Missing data 150 26761 5.57
    Family history of cancer
     No 1862 392298 4.72 Reference Reference
     Yes 452 56907 7.88 1.75 (1.55-1.97) <0.001 1.65 (1.30-2.09) <0.001
     Missing data 16 2023 7.85
    Tobacco exposure
     No 1033 322997 3.19 Reference Reference
     Yes 396 87133 4.52 1.47 (1.28-1.68) <0.001 1.33 (1.07-1.65) 0.01
     Missing data 901 41098 21.45
     A levels: Advanced Level qualifications; AS levels: Advanced subsidiary levels; O levels: General Certificate of Education Ordinary Level; GCSEs: General Certificate of Secondary Education; CSEs: Certificate of Secondary Education; NVQ: National Vocational Qualification; HND: higher National Diploma; HNC: Higher National certificate.
    下载: 导出CSV

    表  2  人群风险评估结果

    Table  2.   Results of population risk assessment

    Risk situationNumber of
    cases
    Proportion of
    cases
    High-risk population 291 68.38%
    Moderate-risk population 123 28.58%
    Low-risk population 13 3.04%
    Total 427 100%
    下载: 导出CSV
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin,2021,71(3): 209–249. doi:
    [2] 郑荣寿, 张思维, 孙可欣, 等. 2016年中国恶性肿瘤流行情况分析. 中华肿瘤杂志,2023,45(3): 212–220. doi:
    [3] 赫捷, 陈万青, 李兆, 等. 中国肺癌筛查与早诊早治指南(2022, 北京). 中国肿瘤,2022,31(7): 488–527. doi:
    [4] VERNIERI C, NICHETTI F, RAIMONDI A, et al. Diet and supplements in cancer prevention and treatment: clinical evidences and future perspectives. Crit Rev Oncol Hematol,2018,123: 57–73. doi:
    [5] BACH P B, KATTAN M W, THORNQUIST M D, et al. Variations in lung cancer risk amongsmokers. J Natl CancerInst,2003,95(6): 470–478. doi:
    [6] SPITZ M R, HONG W K, AMOS C I, et al. A risk model for prediction of lung cancer. J Natl Cancer Inst,2007,99(9): 715–726. doi:
    [7] SPITZ M R, ETZEL C J, DONG Q, et al. An expanded risk prediction model for lung cancer. Cancer Prev Res (Phila),2008,1(4): 250–254. doi:
    [8] El-ZEIN R A, LOPEZ M S, D′AMELIO A M, et al. The cytokinesis-blocked micronucleus assay as a strong predictor of lung cancer: extension of a lung cancer risk prediction model. Cancer Epidemiol Biomarkers Prev,2014,23(11): 2462–2470. doi:
    [9] CASSIDY A, MYLES J P, Van TONGEREN M, et al. The LLP risk model: an individual risk prediction model for lung cancer. Br J Cancer,2008,98(2): 270–276. doi:
    [10] RAJI O Y, AGBAJE O F, DUFFY S W, et al. Incorporation of a genetic factor into an epidemiologic model for prediction of individual risk of lung cancer: the Liverpool Lung Project. Cancer Prev Res (Phila),2010,3(5): 664–669. doi:
    [11] MARCUS M W, CHEN Y, RAJI O Y, et al. Llpi: Liverpool lung project risk prediction model for lung cancer incidenc. Cancer Prev Res (Phila),2015,8(6): 570–575. doi:
    [12] MARCUS M W, RAJI O Y, DUFFY S W, et al. Incorporating epistasis interaction of genetic susceptibility single nucleotide polymorphisms in a lung cancer risk prediction model. Int J Oncol,2016,49(1): 361–370. doi:
    [13] ETZEL C J, KACHROO S, LIU M, et al. Development and validation of a lung cancer risk prediction model for African-Americans. Cancer Prev Res (Phila),2008,1(4): 255–265. doi:
    [14] SPITZ M R, AMOS C I, LAND S, et al. Role of selected genetic variants in lung cancer risk in African Americans. J Thorac Oncol,2013,8(4): 391–397. doi:
    [15] TAMMEMAGI C M, PINSKY P F, CAPORASO N E, et al. Lung cancer risk prediction: prostate, lung, colorectal and ovarian cancer screening trial models and validation. J Natl Cancer Inst,2011,103(13): 1058–1068. doi:
    [16] TAMMEMAGI M C, LAM S C, MCWILLIAMS A M, et al. Incremental value of pulmonary function and sputum DNA image cytometry in lung cancer risk prediction. Cancer Prev Res (Phila),2011,4(4): 552–561. doi:
    [17] TAMMEMAGI M C, KATKI H A, HOCKING W G, et al. Selection criteria for lung-cancer screening. N Engl J Med,2013,368(8): 728–736. doi:
    [18] HOGGART C, BRENNAN P, TJONNELAND A, et al. A risk model for lung cancer incidence. Cancer Prev Res (Phila),2012,5(6): 834–846. doi:
    [19] CHARVAT H, SASAZUKI S, SHIMAZU T, et al. Development of a risk prediction model for lung cancer: the Japan public health center-based prospective study. Cancer Sci,2018,109(3): 854–862. doi:
    [20] YOUNG R P, HOPKINS R J, HAY B A, et al. Lung cancer susceptibility model based on age, family history and genetic variants. PLoS One,2009,4(4): e5302. doi:
    [21] MAISONNEUVE P, BAGNARDI V, BELLOMI M, et al. Lung cancer risk prediction to select smokers for screening CT--a model based on the italian cosmos trial. Cancer Prev Res (Phila),2011,4(11): 1778–1789. doi:
    [22] LI H, YANG L, ZHAO X, et al. Prediction of lung cancer risk in a Chinese population using a multifactorial genetic model. BMC Med Genet,2012,13: 118. doi:
    [23] PARK S, NAM B H, YANG H R, et al. Individualized risk prediction model for lung cancer in Korean men. PLoS One,2013,8(2): e54823. doi:
    [24] WANG X, MA K, CUI J, et al. An individual risk prediction model for lung cancer based on a study in a Chinese population. Tumori,2015,101(1): 16–23. doi:
    [25] 朱猛, 程阳, 戴俊程, 等. 基于全基因组关联研究的中国人群肺癌风险预测模型. 中华流行病学杂志,2015,36(10): 1047–1052. doi:
    [26] WU X, WEN C P, YE Y, et al. Personalized risk assessment in never, light, and heavy smokers in a prospective cohort in Taiwan. Sci Rep,2016,6: 36482. doi:
    [27] WANG X, MA K, CHI L, et al. Combining telomerase reverse transcriptase genetic variant rs2736100 with epidemiologic factors in the prediction of lung cancer susceptibility. J Cancer,2016,7(7): 846–853. doi:
    [28] MULLER D C, JOHANSSON M, BRENNAN P. Lung cancer risk prediction model incorporating lung function: development and validation in the UK Biobank prospective cohort study. J Clin Oncol,2017,35(8): 861–869. doi:
    [29] WYNDER E L. Tobacco as a cause of lung cancer: some reflections. Am J Epidemiol,1997,146(9): 687–694. doi:
    [30] OLSSON A C, GUSTAVSSON P, KROMHOUT H, et al. Exposure to diesel motor exhaust and lung cancer risk in a pooled analysis from case-control studies in Europe and Canada. Am J Respir Crit Care Med,2011,183(7): 941–948. doi:
    [31] CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015. CA Cancer J Clin,2016,66(2): 115–132. doi:
    [32] 任冠华, 范亚光, 赵永成, 等. 低剂量螺旋CT肺癌筛查研究进展. 中国肺癌杂志,2013,16(10): 553–558.
    [33] CRUCITTI P, GALLO I F, SANTORO G, et al. Lung cancer screening with low dose CT: experience at Campus Bio-Medico of Rome on 1500 patients. Minerva Chir,2015,70(6): 393–399.
  • 加载中
© 2023《广东院校学报(分子生物学版)》小编部 转播权各种

开放性添加 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方🌊对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 //creativecommons.org/licenses/by-nc/4.0

图(2) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-30
  • 修回日期:  2024-08-30
  • 刊出日期:  2024-10-13

目录

    /

    koko体育app: 返回文章
    koko体育app:返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!