koko体育app

欢迎来到《koko体育app 学报(医学版)》

单细胞转录组鉴定阿尔茨海默病外周血生物标志物GZMK+ CD8+ T细胞

段婷婷 初金语 胡斐斐

段婷婷, 初金语, 胡斐斐. 单细胞转录组鉴定阿尔茨海默病外周血生物标志物GZMK+ CD8+ T细胞[J]. koko体育app 学报(医学版), 2023, 54(5): 863-873. doi: 10.12182/20230960107
引用本文: 段婷婷, 初金语, 胡斐斐. 单细胞转录组鉴定阿尔茨海默病外周血生物标志物GZMK+ CD8+ T细胞[J]. koko体育app 学报(医学版), 2023, 54(5): 863-873. doi:
DUAN Tingting, CHU Jinyu, HU Feifei. Identification of Peripheral Blood GZMK+ CD8+ T Cells As Biomarkers of Alzheimer's Disease Based on Single-Cell Transcriptome[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(5): 863-873. doi: 10.12182/20230960107
Citation: DUAN Tingting, CHU Jinyu, HU Feifei. Identification of Peripheral Blood GZMK+ CD8+ T Cells As Biomarkers of Alzheimer's Disease Based on Single-Cell Transcriptome[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(5): 863-873. doi:

栏目: 论 著

单细胞转录组鉴定阿尔茨海默病外周血生物标志物GZMK+ CD8+ T细胞

doi: 
基金项目: 武汉亚心总医院科研创新基金项目(No. 2022KYCX1-B10)和武汉科技大学启动基金资助
详细信息
    通讯作者:

    E-mail:hufeifei@wust.edu.cn

Identification of Peripheral Blood GZMK+ CD8+ T Cells As Biomarkers of Alzheimer's Disease Based on Single-Cell Transcriptome

More Information
  • 摘要:   目的  基于单细胞RNA测序(single cell RNA sequencing, scRNA-seq)挖掘阿尔茨海默病(Alzheimer's disease, AD)外周血免疫特征作为生物标志物,系统性探索AD外周血免疫细胞亚型丰度、基因表达特征和细胞通讯异常。  方法  从GEO数据库中下载AD外周血免疫细胞scRNA-seq数据集GSE168522,于RAD-Blood网页服务器(//www.bioinform.cn/RAD-Blood/)中分析AD患者血液细胞组成成分变化,利用CellChat分析AD患者血液中异常的细胞间通讯作用。  结果  AD患者和健康人血液中有两种CD8+ T细胞,其中一类高表达颗粒酶K(granzyme K, GZMK)〔伪发现率(false discovery rate, FDR)<0.05〕,另一类高表达GZMAGZMBGZMH(FDR<0.05)。GZMK+ CD8+ T细胞在AD患者血液中含量升高32.9%(P=5.15E-21),与其他细胞类型的交互作用增加,并可能通过主要组织相容性复合体Ⅰ类(major histocompatibility complex class Ⅰ, MHC-Ⅰ)信号转导异常与AD关联,红细胞为GZMK+ CD8+ T细胞MHC-Ⅰ信号通路异常提供了主要配体,即人类白细胞抗原(human leukocyte antigen, HLA)Ⅰ类分子(HLA-AHLA-BHLA-CHLA-E)。血液RESISTIN信号通路仅富集于AD患者血液中,其可能是AD血液特异性信号通路。  结论  外周血GZMK+ CD8+ T细胞含量升高、GZMK+ CD8+ T细胞与红细胞的交互作用增加、RESISTIN通路增强是潜在的AD标志物。
  • koko体育app

    图  1  细胞类型分布情况

    Figure  1.  Distribution of the cell types

    * P<0.05.

    图  2  细胞间基因表达差异

    Figure  2.  Differences in gene exꦅpression between cells

    Difference in gene expression between B cells and CD8+ T cells and other cell types. T༺he size of tꦚhe bubbles represents the fraction of genes in the subgroup; the shades of the color indicate the level of gene expression, with darker colors indicating higher gene expression.

    图  3  AD患者和健康人血液中细胞交互数目及强度差异

    Figure  3.  Diffe🔯ren꧂ces in the number and strength of cell interactions between AD patients and controls

    A, Bubble plots of the number (left) and strength (right) of cellular interactions in GZMK+ CD8+ T cell. B, GZMK+ CD8+ T cell as signal sender (left) and receiver (right) versus other cell interactions between AD patients and controls. Red (or blue) arrows indicate increas♒ed (or decreased) signals in AD patients compared with controls. C, The differences in the strength of inter-cellular communication between AD patients and controls. The colored bar charts at the top (or right) represent the sum of absolute values ꦫof the column values (or row values) shown in the heat map. The red (or blue) in each cell indicates an increased (or decreased) signal in AD patients compared to controls.

    图  4  AD患者和健康人的血液免疫细胞通讯网络中的信号通路信息流差异

    Figure  4.  Difference in information flow of signal pathway in cellular communication network between AD patient and control blood s꧅amples

    A, The bar chart shows the difference in overall information flow between AD patients and controls. The red signal pathway is enriched in AD patients, while the green signal pathway is enriched in healthy controls. The font color on the ordinate represents the significance of the Wilcox test, with red and green representing P<0.05 and black representing P>0.05. B, The overall signal pattern in AD patients and controls. The top (or right) bar graph represents the sum of column values (or row values) displayed in the heat map and the darker the color, the higher the signal strength. C, Statistical of the incoming (left) and outgoing (right) signal patterns of GZMK+ CD8+ T cell in AD patients and controls.

    图  5  AD患者和健康人血液中GZMK+ CD8+ T细胞与其他细胞间配体-受体对变化差异

    Figure  5.  Differences in changes between AD patients and controls in intercellular ligand-receptor pairs between GZMK+ CD8+ T cell and other cells

    A, Probability of communication mediated by ligand-receptor pairs from other cell types to GZMK+ CD8+ T cell; B, probability of communication mediated by ligand-receptor pairs from GZMK+ CD8+ T cell to other cell types.

    图  6  MHC-Ⅰ通路的配体和受体基因的表达情况

    Figure  6.  Expression of ligand and receptor genes of MHC꧂-Ⅰ pathway

    A, Expression difference of CD8A and CD8B genes between AD patients and controls in GZMK+ CD8+ T cell; B, expression difference of HLA-A, HLA-B, HLA-C, and HLA-E genes in erythrocyte between AD patients and controls. The abbreviation avg_log2FC represents average log2 fold change.

    表  1  鉴定细胞类型的标记基因

    Table  1.   Marker 𒐪genes used for cell type identification

    Cell typeMarker genes
    B cell CD19 MS4A1 CD79A CD79B CD27
    CD4+ T cell IL7R GZMK KLRB1 KLRG1 CD3D
    CD8+ T cell CD8A CD8B CD3D CD3E CD3G
    Dendritic cell FCER1A CD1C CLEC10A HLA-DQA1 CST3
    Erythrocyte ALAS2 HBA1 HBA2 HBB GYPA
    Megakaryocyte PPBP PF4 GP9 MYL9 TUBB1
    Monocyte S100A8 LYZ S100A9 S100A12 AIF1 VCAN FCN1
    Naive CD8+ T cell LDHB GAS5 CCR7 LEF1 TCF7
    Natural killer cell TRDC FGFBP2 NKG7 GNLY KLRF1
    Plasmacytoid dendritic cell LILRA4 PLD4 STMN1 TXN PARK7 NUCB2
    下载: 导出CSV

    表  2  细胞分布差异分析(卡方检验)

    Table  2.   🗹 Cell distribution difference analysis 𓄧(Chi-square test)

    CellAD
    (cell number)
    Control
    (cell number)
    χ2dfP
    B cell_1 1563 629 0.29 1 0.59
    B cell_2 1052 473 6.19 1 0.01
    B cell_3 102 11 19.03 1 1.28E-05
    CD4+ T cell 1830 250 277.14 1 3.15E-62
    CD8+ T cell_1 5079 2083 3.22 1 0.07
    CD8+ T cell_2 4333 1278 88.47 1 5.15E-21
    Dendritic cell 385 141 0.50 1 0.48
    Erythrocyte 172 270 237.99 1 1.08E-53
    Megakaryocyte_1 1569 765 25.21 1 5.14E-07
    Megakaryocyte_2 417 418 199.94 1 2.15E-45
    Monocyte_1 7941 2887 14.77 1 1.21E-04
    Monocyte_2 2139 818 0.41 1 0.52
    Monocyte_3 420 316 80.01 1 3.72E-19
    Monocyte_4 90 25 2.36 1 0.12
    Naive CD8+ T cell_1 4730 2061 17.52 1 2.84E-05
    Naive CD8+ T cell_2 3748 1792 51.74 1 6.34E-13
    Naive CD8+ T cell_3 695 203 13.99 1 1.84E-04
    Natural killer cell_1 7639 2717 22.97 1 1.65E-06
    Natural killer cell_2 3604 1523 6.36 1 0.01
    Plasmacytoid dendritic cell_1 238 85 0.56 1 0.45
    Plasmacytoid dendritic cell_2 173 60 0.68 1 0.41
    下载: 导出CSV

    表  3  CD8+ T细胞中AD患者和健康人差异基因表达情况

    Table  3.   DEGs in CD8+ T cells between AD patients and controls

    GeneCD8+ T cell_1 CD8+ T cell_2
    MarkerAD vs. ControlMarkerAD vs. Control
    GZMA Yes Up No Up
    GZMB Yes Down No Up (Not significant)
    GZMH Yes Up No Up
    GZMK No Up Yes Down (Not significant)
    LTB No Up (Not significant) Yes Down
    CMC1 No Up Yes Up
    CD74 No Up Yes Up
    PRF1 Yes Down (Not significant) No Up
    GNLY Yes Down (Not significant) No Down (Not significant)
     Up represents log2 fold change>0 and FDR<0.05; Down represents log2 fold change<0 and FDR<0.05; Not significance represents FDR>0.05.
    下载: 导出CSV
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] 2023 Alzheimer's disease facts and figures. Alzheimers Dement,2023,19(4): 1598–1695. doi:
    [2] CHEN S H, TIAN D Y, SHEN Y Y, et al. Amyloid-beta uptake by blood monocytes is reduced with ageing and Alzheimer's disease. Transl Psychiatry,2020,10(1): 423. doi:
    [3] YAN P, KIM K W, XIAO Q, et al. Peripheral monocyte-derived cells counter amyloid plaque pathogenesis in a mouse model of Alzheimer's disease. J Clin Invest,2022,132(11): e152565. doi:
    [4] ZENARO E, PIETRONIGRO E, DELLA BIANCA V, et al. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med,2015,21(8): 880–886. doi:
    [5] UNGER M S, LI E, SCHARNAGL L, et al. CD8+ T-cells infiltrate Alzheimer's disease brains and regulate neuronal- and synapse-related gene expression in APP-PS1 transgenic mice. Brain Behav Immun,2020,89: 67–86. doi:
    [6] XIONG L L, XUE L L, DU R L, et al. Single-cell RNA sequencing reveals B cell-related molecular biomarkers for Alzheimer's disease. Exp Mol Med,2021,53(12): 1888–1901. doi:
    [7] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics,2014,30(15): 2114–2120. doi:
    [8] BUTLER A, HOFFMAN P, SMIBERT P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol,2018,36(5): 411–420. doi:
    [9] HAO Y, HAO S, ANDERSEN-NISSEN E, et al. Integrated analysis of multimodal single-cell data. Cell,2021,184(13): 3573–3587.e29. doi:
    [10] OBERSTEIN T J, TAHA L, SPITZER P, et al. Imbalance of circulating Th17 and regulatory T cells in Alzheimer's disease: a case control study. Front Immunol,2018,9: 1213. doi:
    [11] FU J, DUAN J, MO J, et al. Mild cognitive impairment patients have higher regulatory T-cell proportions compared with Alzheimer’s disease-related dementia patients. Front Aging Neurosci,2021,12: 624304. doi:
    [12] HUANG L T, ZHANG C P, WANG Y B, et al. Association of peripheral blood cell profile with Alzheimer's disease: a meta-analysis. Front Aging Neurosci,2022,14: 888946. doi:
    [13] XU H, JIA J. Single-cell RNA sequencing of peripheral blood reveals immune cell signatures in Alzheimer's disease. Front Immunol,2021,12: 645666. doi:
    [14] LI J, ZHANG Y, LU T, et al. Identification of diagnostic genes for both Alzheimer's disease and Metabolic syndrome by the machine learning algorithm. Front Immunol,2022,13: 1037318. doi:
    [15] GATE D, SALIGRAMA N, LEVENTHAL O, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature,2020,577(7790): 399–404. doi:
    [16] JONSSON A H, ZHANG F, DUNLAP G, et al. Granzyme K+ CD8 T cells form a core population in inflamed human tissue. Sci Transl Med,2022,14(649): eabo0686. doi:
    [17] ISMAIL R, PARBO P, MADSEN L S, et al. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer's disease: a longitudinal PET study. J Neuroinflammation,2020,17(1): 151. doi:
    [18] KIZILARSLANOĞLU M C, KARA Ö, YEŞIL Y, et al. Alzheimer disease, inflammation, and novel inflammatory marker: resistin. Turk J Med Sci,2015,45(5): 1040–1046.
    [19] MANGOLD C A, MASSER D R, STANFORD D R, et al. CNS-wide sexually dimorphic induction of the major histocompatibility complex 1 pathway with aging. J Gerontol A Biol Sci Med Sci,2017,72(1): 16–29. doi:
    [20] ZALOCUSKY K A, NAJM R, TAUBES A L, et al. Neuronal ApoE upregulates MHC-Ⅰ expression to drive selective neurodegeneration in Alzheimer's disease. Nat Neurosci,2021,24(6): 786–798. doi:
    [21] KOMAL P, MANJARI S K V, NASHMI R. An opinion on the debatable function of brain resident immune protein, T-cell receptor beta subunit in the central nervous system. IBRO Neurosci Rep,2022,13: 235–242. doi:
    [22] DAS R, CHINNATHAMBI S. Microglial priming of antigen presentation and adaptive stimulation in Alzheimer's disease. Cell Mol Life Sci,2019,76(19): 3681–3694. doi:
  • 加载中
© 2023《北京院校学报(医学检验版)》文字编辑部 音乐版权任何

开馆获取一个 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文ꦿ)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 //creativecommons.org/licenses/by-nc/4.0

图(6) / 表(3)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-12
  • 修回日期:  2024-08-29
  • 刊出日期:  2024-10-13

目录

    /

    返回文章
    koko体育app:返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!