koko体育app

欢迎来到《koko体育app 学报(医学版)》
一个特征提取Faster R-CNN的甲状腺结节超声心动图图相要求检验改进方案百度算法

郑天雷 杨娜 koko体育app: 耿诗 koko体育app: 赵先云 koko体育app: 王跃 koko体育app: 程德强 赵蕾

郑天雷, 杨娜, 耿诗, 等. 一种基于Faster R-CNN的甲状腺结节超声图像目标检测改进算法[J]. koko体育app 学报(医学版), 2023, 54(5): 915-922. doi: 10.12182/20230960106
引用本文: 郑天雷, 杨娜, 耿诗, 等. 一种基于Faster R-CNN的甲状腺结节超声图像目标检测改进算法[J]. koko体育app 学报(医学版), 2023, 54(5): 915-922. doi:
ZHENG Tianlei, YANG Na, GENG Shi, et al. An Improved Object Detection Algorithm for Thyroid Nodule Ultrasound Image Based on Faster R-CNN[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(5): 915-922. doi: 10.12182/20230960106
Citation: ZHENG Tianlei, YANG Na, GENG Shi, et al. An Improved Object Detection Algorithm for Thyroid Nodule Ultrasound Image Based on Faster R-CNN[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(5): 915-922. doi:

一种基于Faster R-CNN的甲状腺结节超声图像目标检测改进算法

doi: 
基金项目: 徐州市重点研发计划(No. KC19174)、徐州医科大学江苏省重点实验室开放项目(No. XZSYSKF2021030)和徐州医科大学附属医院院级科研项目(No. 2022ZL26)资助
详细信息
    通讯作者:

    E-mail:xyfysbczhaolei@163.com

An Improved Object Detection Algorithm for Thyroid Nodule Ultrasound Image Based on Faster R-CNN

More Information
  • 摘要:   目的  为提高超声图像中甲状腺结节目标检测精度,提出一种基于Faster R-CNN的甲状腺结节目标检测改进算法。  方法  该算法采用结合了可变形卷积(deformable convolution, DC)的ResNeSt50作为主干网络,提高对形状不规则结节的检测效果。并在主干网络后方引入特征金字塔网络(feature pyramid networks, FPN)和感兴趣区域对齐,前者用于减少甲状腺结节漏检误检现象,后者用于提高小尺寸结节的检测精度。此外,在算法训练的反向传播过程中,使用由锐度感知最小化(sharpness-aware minimization, SAM)改进优化器进行参数更新,提高算法的泛化能力。  结果  实验采用来自徐州医科大学附属医院及南京市第一医院6261张甲状腺超声图像,对改进算法的有效性进行对比评估。实验表明,该算法具有一定的优化效果,最终在测试集的AP50高达97.4%,AP@50:5:95较原始模型也提升了10.0%。与原始模型和现有模型相比改进算法有着更高的检测精度,能更精准地检测甲状腺结节,特别在较低的检测框精度要求下有着较高的召回率。  结论  本研究提出的改进方法是有效的甲状腺结节目标检测算法,能精准地检测出甲状腺结节。
  • koko体育app

    图  1  改进的Faster R-CNN原理图

    Figure  1.  Schematꦉic diagram of improved Faster R-CNN

    DC: deformable convolution; FPN: feature pyramid networks; RPN: region proposal network.

    图  2  ResNeSt Block的总体流程

    Figure  2.  Overall process of ResNeSt Block

    FC: fully connected layer; BN: batch normalization; ReLU: rectified linear unit; CB: Conv+BN+ReLU; $ \oplus $: sum of matrix elements; $ \otimes $: multiplication of elements; c: number of channels for output features; $ c' $: number of complete channels for process characterization; K: number of groups; R: number of splits.

    图  3  FPN原理图

    Figure  3.  Schematic diagram of FPN

    w: width of input image; Sn: features of stage n.

    图  4  加入SAM前后的损失值曲线图

    Figure  4.  Curve of loss value before and after a🤪dding SAM

    图  5  基础模型及不同改进模型的PR曲线图

    Figure  5.  Precision-recall curves of the b🧔asic model and different improved mo✅dels

    A, Precision-recall (PR) curve (AP50); B, PR curve (AP75). The legends for graph B are the same as those in graph A.

    图  6  不同优化方法的可视化效果图

    Figure  6.  ෴ Visual rꦦenderings of different optimization methods

    A, D, G, J and M, Labeled images; B, RoI Pooling; C, RoI Align; E, FPN not included; F, FPN included; H, VGG16; I, ResNeSt50; K, ordinary convolution; L, deformable convolution; N, SAM not used; O, SAM used. Red boxes indicate the location of nodule.

    表  1  基础模型及不同改进模型的平均精度对比

    Table  1.   Comparison of the average precision bet𒐪ween the basic mod🍌el and different improved models

    ModelAP50/%AP75/%AP@50:5:95/%
    Base94.066.858.7
    RoI Align93.673.063.1
    RoI Align+FPN97.173.964.3
    RoI Align+FPN+ResNeSt5097.477.366.4
    RoI Align+FPN+ResNeSt50+DC97.979.067.3
    RoI Align+FPN+ResNeSt50+DC+SAM97.481.368.7
    下载: 导出CSV

    表  2  不同现有模型和改进模型的平均精度对比

    Table  2.   Comparison of the average precision between different existing models and𝔉 the improved modওel

    ModelAP50/%AP75/%AP@50:5:95/%
    YOLOv3 96.2 64.8 58.3
    YOLOX 97.0 76.2 66.4
    RetinaNet 95.6 69.4 61.4
    TOOD 97.1 64.5 64.5
    Swin Transformer 97.4 74.7 64.1
    Improved model 97.4 81.3 68.7
    下载: 导出CSV
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] VACCARELLA S, FRANCESCHI S, BRAY F, et al. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. New Engl J Med,2016,375(7): 614–617. doi:
    [2] HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid,2016,26(1): 1–133. doi:
    [3] 高明. 甲状腺结节和分化型甲状腺癌诊治指南. 中国肿瘤临床,2012,39(17): 1249–1272. doi:
    [4] ZHENG Z, SU T, WANG Y, et al. A novel ultrasound image diagnostic method for thyroid nodules. Sci Rep,2023,13(1): 1654. doi:
    [5] LIN X, ZHOU X, TONG T, et al. A super-resolution guided network for improving automated thyroid nodule segmentation. Comput Meth Prog Bio,2022,227: 107186. doi:
    [6] XU X, WANG C, GUO J, et al. DeepLN: a framework for automatic lung nodule detection using multi-resolution CT screening images. Knowl-Based Syst,2020,189: 105128. doi:
    [7] KUWANA R, ARIJI Y, FUKUDA M, et al. Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs. Dentomaxillofac Rad,2021,50(1): 20200171. doi:
    [8] 王嘉良, 罗健旭, 刘斌, 等. 基于 R-FCN算法的糖尿病眼底病变自动诊断. 计算机工程与应用,2020,56(4): 109–114. doi:
    [9] 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述. 计算机工程与应用,2021,57(8): 10–25. doi:
    [10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 779−788. doi: .
    [11] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam: Springer, 2016: 21−37. doi: .
    [12] XU J, REN H, CAI S, et al. An improved faster R-CNN algorithm for assisted detection of lung nodules. Comput Biol Med,2023,153: 106470. doi:
    [13] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation//Proceedings of the IEEE conference on computer vision and pattern recognition. Columbus: IEEE, 2014: 580−587. doi: .
    [14] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN//Proceedings of the IEEE international conference on computer vision. Venice: IEEE, 2017: 2961−2969. doi: .
    [15] WANG L, YANG S, YANG S, et al. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network. World J Surg Oncol,2019,17(1): 12. doi:
    [16] ZHANG L, ZHUANG Y, HUA Z, et al. Automated location of thyroid nodules in ultrasound images with improved YOLOV3 network. J Xray Sci Technol,2021,29(1): 75–90. doi:
    [17] 柯威. 基于深度卷积神经网络的甲状腺乳头状癌超声图像识别的研究. 广州: 广东工业大学, 2018. doi: .
    [18] 秦丽娜. Cascade Mask R-CNN模型的改进及其在甲状腺良恶性结节识别中的应用研究. 南昌: 南昌大学, 2020.
    [19] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE T Pattern Anal,2017,39(6): 1137–1149. doi:
    [20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition//Proceedings of the 3rd International Conference on Learning Representations. San Diego: DBIP, 2014. doi: .
    [21] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 770−778. doi: .
    [22] ZHU X, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9308−9316. doi: .
    [23] KWON J, KIM J, PARK H, et al. ASAM: adaptive sharpness-aware minimization for scale-invariant learning of deep neural networks//International Conference on Machine Learning. PMLR, 2021: 5905−5914. doi: .
    [24] LI X, WANG W, HU X, et al. Selective kernel networks//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Long Beach: IEEE, 2019: 510−519. doi: .
    [25] 张泽苗, 霍欢, 赵逢禹. 深层卷积神经网络的目标检测算法综述. 小型微型计算机系统,2019,40(9): 1825–1831. doi:
    [26] 郑英豪. Iou-Net模型的改进及其在甲状腺良恶性结节检测与识别中的研究. 南昌: 南昌大学, 2021.
    [27] 张静漪, 罗燕, 刘加林, 等. 卷积神经网络识别正常及异常甲状腺超声图像的价值. 四川医学,2021,42(3): 305–309. doi:
    [28] WU X, TAN G, ZHU N, et al. CacheTrack-YOLO: real-time detection and tracking for thyroid nodules and surrounding tissues in ultrasound videos. IEEE J Biomed Health,2021,25(10): 3812–3823. doi:
  • 加载中
© 2023《上海高中学报(医学检验版)》koko体育app 部 著作权大多数

盛开提取 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0💝),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,♉提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 //creativecommons.org/licenses/by-nc/4.0

图(6) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-30
  • 修回日期:  2024-08-11
  • 刊出日期:  2024-10-13

目录

    /

    返回文章
    koko体育app:返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!