koko体育app

欢迎来到《koko体育app 学报(医学版)》
GEO数据表格库协同设备学思路辨识骨环节炎特色性lncRNA原子标制物及实验操作手机验证

周巧 刘健 忻凌 koko体育app: 方妍妍 齐亚军 胡月迪

周巧, 刘健, 忻凌, 等. GEO数据库联合机器学习策略识别骨关节炎特征性lncRNA分子标志物及实验验证[J]. koko体育app 学报(医学版), 2023, 54(5): 899-907. doi: 10.12182/20230960101
引用本文: 周巧, 刘健, 忻凌, 等. GEO数据库联合机器学习策略识别骨关节炎特征性lncRNA分子标志物及实验验证[J]. koko体育app 学报(医学版), 2023, 54(5): 899-907. doi:
ZHOU Qiao, LIU Jian, XIN Ling, et al. Identification of Characteristic lncRNA Molecular Markers in Osteoarthritis by Integrating GEO Database and Machine Learning Strategies and Experimental Validation[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(5): 899-907. doi: 10.12182/20230960101
Citation: ZHOU Qiao, LIU Jian, XIN Ling, et al. Identification of Characteristic lncRNA Molecular Markers in Osteoarthritis by Integrating GEO Database and Machine Learning Strategies and Experimental Validation[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(5): 899-907. doi:

GEO数据库联合机器学习策略识别骨关节炎特征性lncRNA分子标志物及实验验证

doi: 
基金项目: 安徽省高等学校科学研究项目(自然科学类)重点项目(No. 2022AH050449)、安徽省第12批“115”创新团队(皖人才办〔2019〕1号)、安徽省名中医刘健工作室建设项目(中医药发展秘〔2018〕11号)和安徽省中医药领军人才项目(中医药发展秘〔2018〕23号)资助
详细信息
    通讯作者:

    E-mail:koko体育app:liujianahzy@126.com

Identification of Characteristic lncRNA Molecular Markers in Osteoarthritis by Integrating GEO Database and Machine Learning Strategies and Experimental Validation

More Information
  • 摘要:   目的  利用GEO(Gene Expression Omnibus)数据库联合机器学习筛选骨关节炎(osteoarthritis, OA)特征性的长链非编码RNA(lncRNA)分子标志物。  方法  纳入185例OA及76例正常健康人样本,GEO数据库筛选数据集得出差异表达lncRNA,通过随机森林(randomforest, RF)、最小绝对收缩和选择算子(LASSO)逻辑回归、支持向量机递归特征消除(SVM-RFE)3种算法筛选候选的lncRNA模型,绘制受试者操作特征曲线评价模型。收集临床OA患者30例和正常对照15例的外周血,测定免疫炎症指标,RT-PCR定量分析外周血单核细胞lncRNA分子标志物的表达,Pearson分析lncRNA与免疫炎症指标的相关性。  结果  LASSO得出14个关键标志物,SVM-RFE算法确定6个基因,RF算法确定24个基因。Venn图筛选得出3种算法的重叠基因,包括HOTAIRH19、MIR155HGNKILA。受试者工作特征曲线显示这4个lncRNA的曲线下面积均大于0.7。RT-PCR法发现与正常对照组相比,HOTAIRH19、MIR155HG在OA患者外周血单核细胞中相对表达量升高,NKILA表达量下降(均P<0.01),结果与生物信息学预测结果相一致。Pearson相关性分析表明选定的lncRNA与临床免疫炎症指标相关。  结论  HOTAIRH19、MIR155HGNKILA可作为OA临床诊断分子标志物,且与临床免疫炎症指标相关。
  • koko体育app

    图  1  Combat函数消除数据的批次效应

    Figure  1.  Eliminating the batch effect of th🎃e data with combat funct🎃ion

    A, Five data sets before normalization. B, After normalization of the five data sets.

    图  2  5个数据集差异表达lncRNA火山图

    Figure  2.  Volcano plot of differentiall♕y expressed lncRNAs in the five datasꦐets

    Black represents all differentially expressed lncRNAs, red represents lncRNAs with log2FC>0, and green represents lncRNAs with log2FC<0.

    图  3  LASSO算法筛选14个lncRNA

    Figure  3.  ﷽ LASSO algorithm was used to screen out 14 lncR♎NAs

    A, Each curve in the figure represents the change trajectory of each independent variable coefficient, the vertical coordinate is the value of the coefficient, the lower horizontal coordinate is log (λ), and the upper horizontal coordinate is the number of non-zero coefficients in the model at this time. B, The vertic🐠al coordinate is Binomial Deviance (dichotomous anomaly), which can be interpreted♏ as the magnitude of the error of the model. There are two dashed lines of values in the figure, the left is the line with the lowest error and the right is the line with fewer features.

    图  4  SVM-RFE算法筛选出6个关键lncRNA

    Figure  4.  Support vec🎃tor machine recursive🉐 feature elimination (SVM-RFE) algorithm was used to screen out 6 key lncRNAs

    Graph A is SVM error and graph B is SVM accuracy. 5×CV represents 5-fold cross-validation. The number 6-0.173 in Fig 4A indicates that the error rate for the six trait genes screened out was 0.173. The number 6-0.827 in Fig 4B indicates that the accuracy rate of the six trait genes scree♊ned out was 0🌌.827.

    图  5  RF算法筛选24个特征lncRNA

    Figure  5.  Random forest (RF) algorithm was used to screen out 24 feature lncRN🅰As

    A, The dynamics of the random forest prediction error versus the number of random trees, with the vertical axis of error representing the error; the horizontal axis of trees representing the tree number. The black, red, and green lines show how the false positive rate varies with the number of decision trees for all samples, samples from osteoarthritis patients, and samples from normal healthy people in the five datasets, respectively. B, The 24 genes sorted by importance.

    图  6  关键lncRNA的筛选及验证

    Figure  6.  Screening and validation of key lncRNAs

    A, Venn diagram was used to screen for overlapping genes identified by the three algorithms. B, ROC curves for validating diagnostic efficacy after fitting key lncRNA to one variable.

    图  7  RT-PCR检测lncRNA分子标志物的表达

    Figure  7.  ꦓ RT-PCR to detect ꦆthe expression of lncRNAs molecular markers

    表  1  基因数据集信息

    Table  1.   Information on the gene datasets

    NumberGEO datasetPlatform documentsNCOA
    1 GSE43270 GPL8490 18 23
    2 GSE51588 GPL13497 10 40
    3 GSE117999 GPL20844 10 10
    4 GSE169077 GPL96 5 6
    5 GSE48556 GPL6947 33 106
     NC: normal control; OA: osteoarthritis.
    下载: 导出CSV

    表  2  特异基因引物序列

    Table  2.   Specific gene primer sequences

    GeneForward primer (5′→3′)Reverse primer (5′→3′)
    GAPDH TTCCACCCATGGCAAATTCC ATCTCGCTCCTGGAAGATGG
    MIR155HG GAGTGCTGAAGGCTTGCTGT TTGAACATCCCAGTGACCAG
    HOTAIR GGAAAGATCCAAATGGGACC CTAGGAATCAGCACGAAGCA
    H19 TGATGACGGGTGGAGGGGCT TGATGTCGCCCTGTCTGCAC
    NKILA CTGTCGGGGACTGGTGTATT AATACACCAGTCCCCGACAG
     GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MIR155HG: MIR155 host gene; HOTAIR: HOX transcript antisense RNA; H19: H19 imprinted maternally expressed transcript; NKILA: NF-kappa B interacting lncRNA.
    下载: 导出CSV

    表  3  差异表达最显著的前10个lncRNA

    Table  3.   🐟 Top 10 lncRNAs showing the most significant difference in their expression

    IndexGEO data setGenelog2FCP.Valueadj.P.Val
    1 GSE51588 MIR155HG 9.581 4.44E-03 9.05E-02
    GSE117999
    GSE48556
    2 GSE51588 HOTAIR 2.321 6.44E-06 9.90E-04
    GSE117999
    GSE48556
    3 GSE48556 NKILA −3.686 1.46E-05 1.26E-02
    GSE169077
    4 GSE43270 H19 2.216 3.05E-05 1.34E-02
    GSE51588
    GSE117999
    GSE48556
    5 GSE43270 MEG3 −3.033 3.01E-05 1.34E-02
    GSE51588
    GSE117999
    GSE48556
    6 GSE48556 LINC00973 2.146 3.76E-05 1.36E-02
    7 GSE51588 C15orf54 −2.013 8.44E-05 2.01E-02
    GSE117999
    GSE48556
    8 GSE117999 MEG9 2.252 1.33E-04 2.43E-02
    9 GSE43270 PART1 2.191 1.73E-03 6.23E-02
    GSE51588
    GSE117999
    GSE48556
    10 GSE51588 C3orf79 2.179 2.10E-03 6.67E-02
    GSE117999
    下载: 导出CSV

    表  4  两组免疫炎症指标的变化

    Table  4.   Changes in immunoinflammatory indicat♏ors in th🐻e two groups

    IndicatorNC group (n=15)OA group (n=30)P
    ESR/(mm/1 h) 3.45±1.34 15.6±7.34 <0.001
    CRP/(mg/L) 0.73±0.56 8.3±4.24 <0.001
    IgA/(g/L) 1.68±0.22 3.73±1.25 <0.001
    IgM/(g/L) 1.04±0.12 1.25±0.65 0.654
    IgG/(g/L) 11.47±3.45 13.79±6.44 0.545
    IgE/(IU/mL) 19.49±9.45 70.56±15.56 0.013
    C3/(g/L) 0.63±0.12 0.84±0.32 0.576
    C4/(g/L) 0.11±0.11 0.76±0.89 0.021
    IL-6/(pg/mL) 2.38±1.45 13.09±3.56 0.011
     ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; IgA: immunoglobulin A; IgM: immunoglobulin M; IgG: immunoglobulin G; IgE: immunoglobulin E; C3: complement 3; C4: complement 4; IL-6: interleukin 6. The other abbreviations are explained in the notes to Table 1.
    下载: 导出CSV

    表  5  lncRNA分子标志物与免疫炎症指标的Pearson分析

    Table  5.   Pearson analysis of lncRNA molecular m🦋arkers and immunoinf♑lammatory indicators

    IndicatorH19MIR155HGNKILAHOTAIR
    rPrPrPrP
    ESR/(mm/1 h) 0.044 0.816 0.355 0.052 −0.425 0.021 0.345 0.054
    CRP/(mg/L) 0.014 0.941 0.785 <0.001 −0.308 0.064 0.589 0.001
    IgA/(g/L) 0.439 0.018 0.220 0.243 −0.312 0.056 0.212 0.260
    IgM/(g/L) 0.298 0.110 0.454 0.008 −0.063 0.742 0.040 0.834
    IgG/(g/L) 0.090 0.637 0.119 0.531 −0.122 0.522 0.095 0.618
    IgE/(IU/mL) 0.358 0.051 0.008 0.968 −0.183 0.333 0.445 0.014
    C3/(g/L) 0.035 0.856 0.212 0.260 −0.194 0.304 0.214 0.247
    C4/(g/L) 0.028 0.883 0.010 0.960 −0.007 0.972 0.221 0.214
    IL-6/(pg/mL) 0.061 0.749 0.610 <0.001 0.650 <0.001 0.492 0.006
     ESR, CRP, IgA, IgM, IgG, IgE, C3, C4 and IL-6 denote the same as those in Table 4. H19, MIR155HG, NKILA and HOTAIR denote the same as those in Table 2.
    下载: 导出CSV
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] ZHOU Q, LIU J, XIN L, et al. Exploratory compatibility regularity of Traditional Chinese Medicine on osteoarthritis treatment: a data mining and random walk-based identification. Evid Based Complement Alternat Med,2021,2021: 2361512. doi:
    [2] LI J, YANG X, CHU Q, et al. Multi-omics molecular biomarkers and database of osteoarthritis. Database (Oxford),2022,2022: baac052. doi:
    [3] 仇学梅, 李鑫, 刘锐. 非编码RNA与先天免疫信号调控. koko体育app 学报(医学版),2022,53(1): 20–27. doi:
    [4] ZHOU L, WAN Y, CHENG Q, et al. The expression and diagnostic value of lncRNA H19 in the blood of patients with osteoarthritis. Iran J Public Health,2020,49(8): 1494–1501. doi:
    [5] ZHOU Y, LI J, XU F, et al. Long noncoding RNA H19 alleviates inflammation in osteoarthritis through interactions between TP53, IL-38, and IL-36 receptor. Bone Joint Res,2022,11(8): 594–607. doi:
    [6] CHEN X, LIU J, SUN Y, et al. Correlation analysis of differentially expressed long non-coding RNA HOTAIR with PTEN/PI3K/AKT pathway and inflammation in patients with osteoarthritis and the effect of baicalin intervention. J Orthop Surg Res,2023,18(1): 34. doi:
    [7] HU J, WANG Z, SHAN Y, et al. Long non-coding RNA HOTAIR promotes osteoarthritis progression via miR-17-5p/FUT2/β-catenin axis. Cell Death Dis,2018,9(7): 711. doi:
    [8] ZHOU Z, CHEN J, HUANG Y, et al. Long noncoding RNA GAS5: a new factor involved in bone diseases. Front Cell Dev Biol,2022,26(9): 807419. doi:
    [9] CULEMANN S, GRUNEBOOM A, KRONKE G. Origin and function of synovial macrophage subsets during inflammatory joint disease. Adv Immunol,2019,143: 75–98. doi:
    [10] ZHANG Q, SUN C, LIU X, et al. Mechanism of immune infiltration in synovial tissue of osteoarthritis: a gene expression-based study. J Orthop Surg Res,2023,18(1): 58. doi:
    [11] FERNANDEZ-TAJES J, SOTO-HERMIDA A, VAZQUEZ-MOSQUERA M E, et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum Dis,2014,73(4): 668–677. doi:
    [12] CHOU C H, WU C C, SONG I W, et al. Genome-wide expression profiles of subchondral bone in osteoarthritis. Arthritis Res Ther,2013,15(6): R190. doi:
    [13] BROPHY R H, ZHANG B, CAI L, et al. Transcriptome comparison of meniscus from patients with and without osteoarthritis. Osteoarthritis Cartilage,2018,26(3): 422–432. doi:
    [14] RAMOS Y F, BOS S D, LAKENBERG N, et al. Genes expressed in blood link osteoarthritis with apoptotic pathways. Ann Rheum Dis,2014,73(10): 1844–1853. doi:
    [15] RADUA J, VIETA E, SHINOHARA R, et al. Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. Neuroimage,2020,218: 116956. doi:
    [16] PEIGNIER S, CALEVRO F. Gene self-expressive networks as a generalization-aware tool to model gene regulatory networks. Biomolecules,2023,13(3): 526. doi:
    [17] SPEISER J L. A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data. J Biomed Inform,2021,117: 103763. doi:
    [18] LEVY J J, O'MALLEY A J. Don't dismiss logistic regression: the case for sensible extraction of interactions in the era of machine learning. BMC Med Res Methodol,2020,20(1): 171. doi:
    [19] LIN X, LI C, ZHANG Y, et al. Selecting feature subsets based on SVM-RFE and the overlapping ratio with applications in bioinformatics. Molecules,2017,23(1): 52. doi:
    [20] 高宏伟, 于东旭, 韩继成, 等. 基于循证医学指南的膝关节骨关节炎非手术诊疗方案思考. 长春中医药大学学报,2022,38(9): 952–955. doi:
    [21] OLSSON S, AKBARIAN E, LIND A, et al. Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population. BMC Musculoskelet Disord,2021,22(1): 844. doi:
    [22] HAUBRUCK P, PINTO M M, MORADI B, et al. Monocytes, macrophages, and their potential niches in synovial joints-therapeutic targets in post-traumatic osteoarthritis? Front Immunol,2021,12: 763702. doi:
    [23] CHEN H, YANG S, SHAO R. Long non-coding XIST raises methylation of TIMP-3 promoter to regulate collagen degradation in osteoarthritic chondrocytes after tibial plateau fracture. Arthritis Res Ther,2019,21(1): 271. doi:
    [24] HAN H, LIN L. Long noncoding RNA TUG1 regulates degradation of chondrocyte extracellular matrix via miR-320c/MMP-13 axis in osteoarthritis. Open Life Sci,2021,16(1): 384–394. doi:
    [25] ZHANG L, ZHANG P, SUN Y, et al. Long non-coding RNA DANCR regulates proliferation and apoptosis of chondrocytes in osteoarthritis via miR-216a-5p-JAK2-STAT3 axis. Biosci Rep,2018,138(6): BSR20181228. doi:
    [26] LI R, SHI T T, WANG Q, et al. Elevated lncRNA MIAT in peripheral blood mononuclear cells contributes to post-menopausal osteoporosis. Aging (Albany NY),2022,14(7): 3143–3154. doi:
    [27] WANG A, HU N, ZHANG Y, et al. MEG3 promotes proliferation and inhibits apoptosis in osteoarthritis chondrocytes by miR-361-5p/FOXO1 axis. BMC Med Genomics,2019,12(1): 201. doi:
    [28] ZOU Y, SHEN C, SHEN T, et al. lncRNA THRIL is involved in the proliferation, migration, and invasion of rheumatoid fibroblast-like synoviocytes. Ann Transl Med,2021,9(17): 1368. doi:
    [29] DANG X, WU D. The diagnostic value and pathogenetic role of lncRNA-ATB in patients with osteoarthritis. Cell Mol Biol Lett,2018,27(23): 55. doi:
    [30] LU J, WU Z, XIONG Y. Knockdown of long noncoding RNA HOTAIR inhibits osteoarthritis chondrocyte injury by miR-107/CXCL12 axis. J Orthop Surg Res,2021,16(1): 410. doi:
    [31] HU D, ZHONG T, DAI Q. Long non-coding RNA NKILA reduces oral squamous cell carcinoma development through the NF-KappaB signaling pathway. Technol Cancer Res Treat,2020,19: 1533033820960747. doi:
    [32] PENG L, CHEN Z, CHEN Y, et al. MIR155HG is a prognostic biomarker and associated with immune infiltration and immune checkpoint molecules expression in multiple cancers. Cancer Med,2019,8(17): 7161–7173. doi:
    [33] MAO Z, ZHU Y, HAO W, et al. MicroRNA-155 inhibition up-regulates LEPR to inhibit osteoclast activation and bone resorption via activation of AMPK in alendronate-treated osteoporotic mice. IUBMB Life,2019,71(12): 1916–1928. doi:
    [34] WIEGERTJES R, Van De LOO F A J, BLANEY DAVIDSON E N. A roadmap to target interleukin-6 in osteoarthritis. Rheumatology (Oxford),2020,59(10): 2681–2694. doi:
    [35] WANG Q, LEPUS C M, RAGHU H, et al. IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis. Elife,2019,8: e39905. doi:
    [36] STAMBOUGH J B, CURTIN B M, ODUM S M, et al. Does change in ESR and CRP guide the timing of two-stage arthroplasty reimplantation? Clin Orthop Relat Res,2019,477(2): 364–371. doi:
    [37] KRISHNA A, GARG S, GUPTA S, et al. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) trends following total hip and knee arthroplasties in an Indian population--a prospective study. Malays Orthop J,2021,15(2): 143–150. doi:
    [38] 鲍丙溪, 刘健, 万磊, 等. 骨关节炎患者免疫炎症关键蛋白表达谱变化及中医药的干预研究. 中国免疫学杂志,2021,37(11): 1313–1318. doi:
    [39] GRONWALL C, LILJEFORS L, BANG H, et al. A comprehensive evaluation of the relationship between different IgG and IgA anti-modified protein autoantibodies in rheumatoid arthritis. Front Immunol,2021,12: 627986. doi:
    [40] JONES K, SAVULESCU A F, BROMBACHER F, et al. Immunoglobulin M in health and diseases: how far have we come and what next? Front Immunol,2020,11: 595535. doi:
  • 加载中
© 2023《四川省大学时学报(药学版)》修改部 转播权其它

休馆得到 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同ꦓ时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 //creativecommons.org/licenses/by-nc/4.0

图(7) / 表(5)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  13
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-25
  • 修回日期:  2024-06-19
  • 网络出版日期:  2024-10-16
  • 刊出日期:  2024-10-13

目录

    /

    返回文章
    koko体育app:返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!