koko体育app

欢迎来到《koko体育app 学报(医学版)》
癌肿微工作环境排泄的设计近展及免疫检测方法新方式

koko体育app: 彭译漫 罗香梦 koko体育app: 陈婧瑶

彭译漫, 罗香梦, 陈婧瑶. 肿瘤微环境代谢的研究进展及免疫治疗新策略[J]. koko体育app 学报(医学版), 2023, 54(3): 505-509. doi: 10.12182/20230560502
引用本文: 彭译漫, 罗香梦, 陈婧瑶. 肿瘤微环境代谢的研究进展及免疫治疗新策略[J]. koko体育app 学报(医学版), 2023, 54(3): 505-509. doi:
PENG Yi-man, LUO Xiang-meng, CHEN Jing-yao. Research Progress and New Immunotherapy Strategies of Tumor Microenvironment Metabolism[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 505-509. doi: 10.12182/20230560502
Citation: PENG Yi-man, LUO Xiang-meng, CHEN Jing-yao. Research Progress and New Immunotherapy Strategies of Tumor Microenvironment Metabolism[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 505-509. doi:

肿瘤微环境代谢的研究进展及免疫治疗新策略

doi: 
基金项目: 国家自然科学基金青年科学基金项目(No. 82102779)资助
详细信息
    通讯作者:

    E-mail:koko体育app:jingyaochen@163.com

Research Progress and New Immunotherapy Strategies of Tumor Microenvironment Metabolism

More Information
  • 摘要: 肿瘤微环境是肿瘤发生和生长的环境,包括多种细胞类型和细胞外成分,对肿瘤的发生、发展起着重要作用。由于肿瘤的异常增殖,肿瘤微环境具有特殊的理化环境,造成复杂的代谢模式,免疫细胞作用随之受到影响。理解肿瘤微环境代谢模式能帮助koko体育app 开发靶向肿瘤微环境的免疫治疗方案。微生物代谢和脂代谢是肿瘤微环境的关键代谢过程,也是目前新兴的研究热点。微生物释放的代谢产物和细胞脂代谢重编程影响肿瘤和免疫细胞的生命活动。本文概述了肿瘤微环境组成及代谢特征,讨论了近年来肿瘤微环境中的微生物代谢和脂代谢的研究进展,总结了相关代谢调控靶点和免疫治疗策略,指出找到高效的治疗靶点是肿瘤微环境治疗领域的难点和研究方向。
  • [1] ANDERSON N M, SIMON M C. The tumor microenvironment. Curr Biol,2020,30(16): R921–R925. doi:
    [2] 陈洁,陈众博,张筠,等. 细胞外基质在肿瘤发展及治疗中的作用. 生命的化学,2022,42(3): 385–393. doi:
    [3] NEJMAN D, LIVYATAN I, FUKS G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science,2020,368(6494): 973–980. doi:
    [4] GENG X, CHEN H, ZHAO L, et al. Cancer-associated fibroblast (CAF) heterogeneity and targeting therapy of CAFs in pancreatic cancer. Front Cell Dev Biol,2021,9: 655152. doi:
    [5] BARTOSCHEK M, OSKOLKOV N, BOCCI M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun,2018,9(1): 5150. doi:
    [6] SUN H, ZHANG D, HUANG C, et al. Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer. Cancer Biol Med,2021,18(2): 616–630. doi:
    [7] QUAIL D F, JOYCE J A. Microenvironmental regulation of tumor progression and metastasis. Nat Med,2013,19(11): 1423–1437. doi:
    [8] HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation. Cell,2011,144(5): 646–674. doi:
    [9] HÖCKEL M, VAUPEL P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst,2001,93(4): 266–276. doi:
    [10] IVEY J W, BONAKDAR M, KANITKAR A, et al. Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Lett,2016,380(1): 330–339. doi:
    [11] FISCHER K, HOFFMANN P, VOELKL S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood,2007,109(9): 3812–3819. doi:
    [12] DODARD G, TATA A, ERICK T K, et al. Inflammation-induced lactate leads to rapid loss of hepatic tissue-resident NK cells. Cell Rep,2020,32(1): 107855. doi:
    [13] KOUIDHI S, BEN AYED F, BENAMMAR ELGAAIED A. Targeting tumor metabolism: a new challenge to improve immunotherapy. Front Immunol,2018,9: 353. doi:
    [14] CHEN Y, SONG Y, DU W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci,2019,26(1): 78. doi:
    [15] O'NEILL L A, KISHTON R J, RATHMELL J. A guide to immunometabolism for immunologists. Nat Rev Immunol,2016,16(9): 553–565. doi:
    [16] GEIGER R, RIECKMANN J C, WOLF T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell,2016,167(3): 829–842.e13. doi:
    [17] MARIGO I, ZILIO S, DESANTIS G, et al. T cell cancer therapy requires CD40-CD40L activation of tumor necrosis factor and inducible nitric-oxide-synthase-producing dendritic cells. Cancer Cell,2016,30(3): 377–390. doi:
    [18] CRONIN S J F, SEEHUS C, WEIDINGER A, et al. The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature,2018,563(7732): 564–568. doi:
    [19] PERRONE F, MINARI R, BERSANELLI M, et al. The prognostic role of high blood cholesterol in advanced cancer patients treated with immune checkpoint inhibitors. J Immunother,2020,43(6): 196–203. doi:
    [20] BLEVE A, DURANTE B, SICA A, et al. Lipid metabolism and cancer immunotherapy: immunosuppressive myeloid cells at the crossroad. Int J Mol Sci,2020,21(16): 5845. doi:
    [21] XUE Q, ROH-JOHNSON M. Sharing is caring. Dev Cell,2019,49(3): 306–307. doi:
    [22] POORE G D, KOPYLOVA E, ZHU Q, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature,2020,579(7800): 567–574. doi:
    [23] JAIN T, SHARMA P, ARE A C, et al. New insights into the cancer-microbiome-immune axis: decrypting a decade of discoveries. Front Immunol,2021,12: 622064. doi:
    [24] WONG-ROLLE A, WEI H K, ZHAO C, et al. Unexpected guests in the tumor microenvironment: microbiome in cancer. Protein Cell,2021,12(5): 426–435. doi:
    [25] GREATHOUSE K L, WHITE J R, VARGAS A J, et al. Interaction between the microbiome and TP53 in human lung cancer. Genome Biol,2018,19(1): 123. doi:
    [26] MA J, HUANG L, HU D, et al. The role of the tumor microbe microenvironment in the tumor immune microenvironment: bystander, activator, or inhibitor? J Exp Clin Cancer Res,2021,40(1): 327. doi:
    [27] TSAY J J, WU B G, BADRI M H, et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med,2018,198(9): 1188–1198. doi:
    [28] GUO W, ZHANG Y, GUO S, et al. Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Commun Biol,2021,4(1): 1019. doi:
    [29] FU A, YAO B, DONG T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell,2022,185(8): 1356–1372.e26. doi:
    [30] GELLER L T, BARZILY-ROKNI M, DANINO T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science,2017,357(6356): 1156–1160. doi:
    [31] HELMINK B A, KHAN M A W, HERMANN A, et al. The microbiome, cancer, and cancer therapy. Nat Med,2019,25(3): 377–388. doi:
    [32] MIMA K, SUKAWA Y, NISHIHARA R, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol,2015,1(5): 653–661. doi:
    [33] GUR C, MAALOUF N, SHHADEH A, et al. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1. Oncoimmunology,2019,8(6): e1581531. doi:
    [34] FONG W, LI Q, YU J. Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene,2020,39(26): 4925–4943. doi:
    [35] ROUTY B, Le CHATELIER E, DEROSA L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science,2018,359(6371): 91–97. doi:
    [36] MATSON V, FESSLER J, BAO R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science,2018,359(6371): 104–108. doi:
    [37] ZHENG J H, NGUYEN V H, JIANG S N, et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med,2017,9(376): eaak9537. doi:
    [38] PUSHALKAR S, HUNDEYIN M, DALEY D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov,2018,8(4): 403–416. doi:
    [39] CORN K C, WINDHAM M A, RAFAT M. Lipids in the tumor microenvironment: from cancer progression to treatment. Prog Lipid Res,2020,80: 101055. doi:
    [40] BIAN X, LIU R, MENG Y, et al. Lipid metabolism and cancer. J Exp Med,2021,218(1): e20201606. doi:
    [41] WU L, ZHANG X, ZHENG L, et al. RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res,2020,8(5): 710–721. doi:
    [42] Di CONZA G, TSAI C H, GALLART-AYALA H, et al. Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nat Immunol,2021,22(11): 1403–1415. doi:
    [43] O'NEILL L A, PEARCE E J. Immunometabolism governs dendritic cell and macrophage function. J Exp Med,2016,213(1): 15–23. doi:
    [44] YIN X, ZENG W, WU B, et al. PPARα inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction. Cell Rep,2020,33(3): 108278. doi:
    [45] LIU X, HARTMAN C L, LI L, et al. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy. Sci Transl Med,2021,13(587): eaaz6314. doi:
    [46] LI X, WENES M, ROMERO P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol,2019,16(7): 425–441. doi:
    [47] FIELD C S, BAIXAULI F, KYLE R L, et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for treg suppressive function. Cell Metab,2020,31(2): 422–437.e5. doi:
    [48] WANG J, LI Y. CD36 tango in cancer: signaling pathways and functions. Theranostics,2019,9(17): 4893–4908. doi:
  • 加载中
计量
  • 文章访问数:  892
  • HTML全文浏览量:  30
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2024-04-20
  • 网络出版日期:  2024-05-20
  • 刊出日期:  2024-05-20

目录

    /

    返回文章
    koko体育app:返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!