koko体育app

欢迎来到《koko体育app 学报(医学版)》
吐液肺部肿瘤标签物的研究分析近况

龚涛 郑欣 周学东

龚涛, 郑欣, 周学东. 唾液肿瘤标志物的研究进展[J]. koko体育app 学报(医学版), 2023, 54(3): 462-468. doi: 10.12182/20230560112
引用本文: 龚涛, 郑欣, 周学东. 唾液肿瘤标志物的研究进展[J]. koko体育app 学报(医学版), 2023, 54(3): 462-468. doi:
GONG Tao, ZHENG Xin, ZHOU Xue-dong. Latest Findings on Salivary Tumor Biomarkers[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 462-468. doi: 10.12182/20230560112
Citation: GONG Tao, ZHENG Xin, ZHOU Xue-dong. Latest Findings on Salivary Tumor Biomarkers[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 462-468. doi:

唾液肿瘤标志物的研究进展

doi: 
基金项目: 国家自然科学基金项目(No. 81870754、No. 81900995、No. 32270120)和口腔疾病研究国家重点实验室交叉研究项目(No. 2022KXK0402)资助
详细信息
    作者简介:

    周学东,中国医学科学院学部委员,koko体育app 二级教授,主任医师,博士生导师,koko体育app 华西口腔医院学术院长、口腔疾病研究国家重点实验室主任。主要从事龋病、牙髓根尖病、口腔感染性疾病与全身健康的基础研究和临床诊疗。承担国家、省部级重点科研项目12项;授权国家发明专利10项;主编《龋病学》《牙体牙髓病学》《中华口腔科学》等教材专著19部;以第一完成人获得国家科技进步奖二等奖1项,部省级科技成果一等奖6项,全国首届创先争优奖,国际牙科研究会最高科研奖——William Gies奖,连续入选爱思唯尔中国高被引学者。Int J Oral SciBone Res和《中国口腔医学年鉴》主编

    通讯作者:

    E-mail:koko体育app:zhouxd@dikai.net.cn

Latest Findings on Salivary Tumor Biomarkers

More Information
  • 摘要: 唾液是由口腔唾液腺分泌的混合生物体液,蕴含丰富的物质信息。随着唾液组学的不断发展,唾液不仅作为巨大的生物标志物储存库,唾液诊断也成为一种新型诊断技术,具有无侵袭性、易于获取、成本低等优势。但口腔环境复杂多变,标志物含量等易受影响,找到“真正的”唾液生物标志物仍然是一个挑战。本文主要关注常见肿瘤的潜在唾液标志物,包括DNA、RNA、蛋白质、代谢物和微生物等,针对目前已鉴定的或关联性标志物进行系统性总结,并指出建立多学科交叉体系开发唾液诊断技术,逐步构建唾液诊断平台,寻找更加精准的肿瘤预警标志物是未来发展方向。
  • koko体育app

    表  1  潜在的口腔癌唾液标志物

    Table  1.   Potential salivary bio๊markers for oral cancer

    CategorySalivary tumor biomarkersSensitivitySpecificityExpressionReferences
    DNA 3p, 9q, 13q, and 17p [8, 16]
    p53, p16, p27, p63, and p73 [8]
    p16, MGMT, DAP-K, NID2, and HOXA9 [8]
    Cyclin D1 and Ki67 [8, 17]
    OGG1, P-Src, and Maspin [8, 18]
    mRNA IL-8, H3F3A, IL-1-β, S100P, DUSP1, OAZ1, and SAT [8, 14]
    miR-708, miR-10b, miR-19a, miR-30e, miR-26a, and miR-660 [2, 19-20]
    miR-99, miR-15a, miR-197, miR-145, and miR-150 [2, 19-20]
    Protein CD59, defensin-1, and catalase 90% 80% [2]
    CEA 76.4% 80.4% [13]
    MMP1, KNG1, ANXA2, and HSPA5 87.5% 80.5% [12]
    CD44, IL-8, and telomerase [8, 21-22]
    IPA, SCC-Ag 2, CA19-9, CA128, CA125, Cyfra 21-1, TPS, 8-OHdG, LDH, IgG, s-IgA, IGF, MMP-2, MMP-11, calcyclin, and RhoGDI [8, 23]
    Clusterin [8, 24]
    Small molecule ROS, RNS, and NO [2, 15, 20]
    Microorganism Porphyromonasgingivalis, Tannerella forsythia, Candida albicans, Prevotellamelaninogenica, Streptococcus mitis, Pseudomonas aeruginosa, and Human papilloma virus [15, 25-26]
     MGMT: O6-methylguanine-DNA methyltransferase; DAP-K: death-associated protein kinase; NID2: nidogen-2; HOXA9: homeobox A9; OGG1: 8-oxoquanine DNA glycosylase; IL: interleukin; H3F3A: H3 histone, family 3A; S100P: S100 calcium binding protein P; DUSP1: dual specificity phosphatase 1; OAZ1: ornithine decarboxylase antizyme 1; SAT: spermidine/spermine N1-acetyltransferase; CD: cluster of differentiation; CEA: carcinoembryonic antigen; MMP1: matrix metalloproteinase 1; KNG1: kininogen 1; ANXA2: annexin A2; HSPA5: heat shock protein family A member 5; IPA: inhibitors of apoptosis; SCC-Ag 2: squamous cell carcinoma antigen 2; CA: cancer antigen; Cyfra 21-1: cytokeratin 19 fragment; TPS: tissue polypeptide specific antigen; 8-OHdG: 8-hydroxydeoxyguanosine; LDH: lactate dehydrogenase; Ig: immunoglobulin; IGF: insulin growth factor; RhoGDI: Rho GDP dissociation inhibitor; ROS: reactive oxygen species; RNS: reactive nitrogen species; NO: nitrogen monoxide. ↑: Upregulated genes or proteins; ↓: Downregulated genes or proteins; —: None.
    下载: 导出CSV

    表  2  潜在的肺癌唾液标志物

    Table  2.   Potential saliv𒆙ary biomarkers for lung cancer

    CategorySalivary tumor biomarkersSensitivitySpecificityExpressionReferences
    mRNA CCNI, EGFR, FGF19, FRS2, and GREB1 93.75% 82.81% [1, 28]
    Protein Haptoglobin, ZAG, and calreticulin 88.5% 92.3% [1]
     CCNI: cyclin I; EGFR: epidermal growth factor receptor; FGF19: fibroblast growth factor 19; FRS2: fibroblast growth factor receptor substrate 2; GREB1: growth regulation by estrogen in breast cancer 1; ZAG: zinc-alpha-2-glycoprotein.
    下载: 导出CSV

    表  3  潜在的胰腺癌唾液标志物

    Table  3.   💮 Potential salivary biomarkers for pancreatic cancer

    CategorySalivary tumor biomarkersSensitivitySpecificityExpressionReferences
    mRNA KRAS, MBD3L2, and ACRV1 90.0% 95.0% [33]
    DPM1 90.0% 95.0% [33]
    miRNA miR-17, miR-21, miR-181a, miR-181b, and miR-196a [38]
    hsa-miR-21 71.4% 100% [34]
    hsa-miR-23a 85.7% 100% [34]
    hsa-miR-23b 85.7% 100% [34]
    miR-29c 57% 100% [34]
    Protein CEA and CA125 92.31% 84.62% [32]
    Microorganism Neisseria elongata and Streptococcus mitis 96.4% 82.1% [35]
     KRAS: Kirsten rat sarcoma viral oncogene homolog; MBD3L2: methyl-CpG binding domain protein 3 like 2; ACRV1: acrosomal vesicle protein 1; DPM1: dolichol-phosphate mannosyltransferase subunit 1; CEA: carcinoembryonic antigen; CA: cancer antigen.
    下载: 导出CSV

    表  4  潜在的乳腺癌唾液标志物

    Table  4.   Potent𝔍ial salivary biomarkers for breast cancer

    CategorySalivary tumor biomarkersSensitivitySpecificityExpressionReferences
    mRNA CSTA, TPT1, IGF2BP1, GRM1, GRIK1, H6PD, MDM4, and S100A8 83% 97% [46]
    Protein CA6 [1]
    CA15-3 95.87% 88.66% [48]
    ER-α, VEGF, EGF, CEA, HER2, CA15-3, P53, and CA125 [4]
    Small molecule Choline, isethionate, cadavarine,
    N1-acetylspermidine, and spermine
    [1]
     CSTA: cysteine protease inhibitor A; TPT1: translationally-controlled tumor protein 1; IGF2BP1: insulin-like growth factor 2 mRNA-binding protein 1; GRM1: metabotropic glutamate receptor 1; GRIK1: glutamate receptor, ionotropic, kainate 1; H6PD: hexose-6-phosphate dehydrogenase; MDM4: murine double minute 4; S100A8: S100 calcium-binding protein A8; CA: cancer antigen; ER-α: estrogen receptor-alpha; VEGF: vascular endothelial growth factor; EGF: epidermal growth factor; CEA: carcinoembryonic antigen; HER2: human epidermal receptor 2.
    下载: 导出CSV
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] WANG X, KACZOR-URBANOWICZ K E, WONG D T. Salivary biomarkers in cancer detection. Med Oncol,2017,34(1): 7. doi:
    [2] GOPAL S K, RAVI P. Salivary biomarkers--a modern approach to diagnosis. J Pharm Sci Res,2021,13(11): 677–680.
    [3] DEVARAJ S D. Salivary biomarkers--a review. J Pharm Sci Res,2013,5(10): 210.
    [4] LAIDI F, ZAOUI F. Saliva diagnostic and cancer monitoring: overview. J Intern Dent Med Res,2015,8(2): 94–97.
    [5] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin,2021,71(3): 209–249. doi:
    [6] CROSBY D, BHATIA S, BRINDLE K M, et al. Early detection of cancer. Science,2022,375(6586): eaay9040. doi:
    [7] ZHANG A, SUN H, WANG X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl Biochem Biotechnol,2012,168(6): 1718–1727. doi:
    [8] SAXENA S, SANKHLA B, SUNDARAGIRI K S, et al. A review of salivary biomarker: a tool for early oral cancer diagnosis. Adv Biomed Res,2017,6: 90. doi:
    [9] FAN T, WANG X, ZHANG S, et al. NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy. Signal Transduct Target Ther,2022,7(1): 1–11. doi:
    [10] WARNAKULASURIYA S, KERR A R. Oral cancer screening: past, present, and future. J Dent Res,2021,100(12): 1313–1320. doi:
    [11] LIAO P H, CHANG Y C, HUANG M F, et al. Mutation of p53 gene codon 63 in saliva as a molecular marker for oral squamous cell carcinomas. Oral Oncol,2000,36(3): 272–276. doi:
    [12] YAO Z, AN W, TUERDI M, et al. Identification of novel prognostic indicators for oral squamous cell carcinoma based on proteomics and metabolomics. Transl Oncol,2016,33: 101672. doi:
    [13] KAUR J, JACOBS R, HUANG Y, et al. Salivary biomarkers for oral cancer and pre-cancer screening: a review. Clin Oral Investig,2018,22(2): 633–640. doi:
    [14] LI Y, JOHN M A S, ZHOU X, et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res,2004,10(24): 8442–8450. doi:
    [15] KAKABADZE M Z, PARESISHVILI T, KARALASHVILI L, et al. Oral microbiota and oral cancer: review. Oncol Rev,2020,14(2): 476. doi:
    [16] CALIFANO J, Van Der RIET P, WESTRA W, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res,1996,56(11): 2488–2492. doi:
    [17] VIELBA R, BILBAO J, ISPIZUA A, et al. p53 and cyclin D1 as prognostic factors in squamous cell carcinoma of the larynx. Laryngoscope,2003,113(1): 167–172. doi:
    [18] SHPITZER T, HAMZANY Y, BAHAR G, et al. Salivary analysis of oral cancer biomarkers. Br J Cancer,2009,101(7): 1194–1198. doi:
    [19] POORNIMA G, KUMAR T S M. Genomic alphabets of saliva as a biomarker in oral cancer. J Indian Acad Oral Med Radiol,2017,29(4): 300. doi:
    [20] YANG Y, LI Y X, YANG X, et al. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis. BMC Cancer,2013,13(1): 1–8. doi:
    [21] FRANZMANN E J, REATEGUI E P, PEDROSO F, et al. Soluble CD44 is a potential marker for the early detection of head and neck cancer. Cancer Epidemiol Biomarkers Prev,2007,16(7): 1348–1355. doi:
    [22] JOHN M A S, LI Y, ZHOU X, et al. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg,2004,130(8): 929–935. doi:
    [23] MARKOPOULOS A K, MICHAILIDOU E Z, TZIMAGIORGIS G. Salivary markers for oral cancer detection. Open Dent J,2010,4: 172–178. doi:
    [24] HU S, ARELLANO M, BOONTHEUNG P, et al. Salivary proteomics for oral cancer biomarker discovery. Clin Cancer Res,2008,14(19): 6246–6252. doi:
    [25] KANG M S, OH J S, KIM H J, et al. Prevalence of oral microbes in the saliva of oncological patients. J Bacteriol Virol,2009,39(4): 277–285. doi:
    [26] MAGER D, HAFFAJEE A, DEVLIN P, et al. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med,2005,3: 27. doi:
    [27] HIRSCH F R, SCAGLIOTTI G V, MULSHINE J L, et al. Lung cancer: current therapies and new targeted treatments. Lancet,2017,389(10066): 299–311. doi:
    [28] ZHANG L, XIAO H, ZHOU H, et al. Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell Mol Life Sci,2012,69(19): 3341–3350. doi:
    [29] QIAN K, WANG Y, HUA L, et al. New method of lung cancer detection by saliva test using surface-enhanced Raman spectroscopy. Thoracic Cancer,2018,9(11): 1556–1561. doi:
    [30] 李晓舟, 杨天月, 丁建华. 唾液表面增强拉曼光谱用于肺癌的诊断. 光谱学与光谱分析,2012,32(2): 391–393. doi:
    [31] 高明, 徐钧, 杨文慧. 胰腺癌早期诊断的肿瘤标志物研究进展. 肿瘤研究与临床,2020,32(12): 881–884. doi:
    [32] 赵治锋, 谢荣理, 沈东杰, 等. 唾液肿瘤标志物诊断胰腺癌的研究. 外科理论与实践,2019,24(2): 149–154. doi:
    [33] ZHANG L, FARRELL J J, ZHOU H, et al. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology,2010,138(3): 949–957.e947. doi:
    [34] HUMEAU M, VIGNOLLE-VIDONI A, SICARD F, et al. Salivary microRNA in pancreatic cancer patients. PLoS One,2015,10(6): e0130996. doi:
    [35] FARRELL J J, ZHANG L, ZHOU H, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut,2012,61(4): 582–588. doi:
    [36] TORRES P J, FLETCHER E M, GIBBONS S M, et al. Characterization of the salivary microbiome in patients with pancreatic cancer. Peerj,2015,3: e1373. doi:
    [37] LAU C, KIM Y, CHIA D, et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem,2013,288(37): 26888–26897. doi:
    [38] GAO S, CHEN L Y, WANG P, et al. MicroRNA expression in salivary supernatant of patients with pancreatic cancer and its relationship with ZHENG. Biomed Res Int,2014,2014: 756347. doi:
    [39] XIAO H, ZHANG Y, KIM Y, et al. Differential proteomic analysis of human saliva using tandem mass tags quantification for gastric cancer detection. Sci Rep,2016,6: 22165. doi:
    [40] LI F, YOSHIZAWA J M, KIM K M, et al. Discovery and validation of salivary extracellular RNA biomarkers for noninvasive detection of gastric cancer. Clin Chem,2018,64(10): 1513–1521. doi:
    [41] RÖCKEN C. Predictive biomarkers in gastric cancer. J Cancer Res Clin Oncol,2023,149(1): 467–481. doi:
    [42] USUI Y, TANIYAMA Y, ENDO M, et al. Helicobacter pylori, homologous-recombination genes, and gastric cancer. N Engl J Med,2023,388(13): 1181–1190. doi:
    [43] 杨锴毓, 李雨庆, 周学东. 口腔幽门螺杆菌与胃幽门螺杆菌感染关系的研究进展. 华西口腔医学杂志,2014,32(3): 314–318. doi:
    [44] SUN Y S, ZHAO Z, YANG Z N, et al. Risk factors and preventions of breast cancer. Int J Biol Sci,2017,13(11): 1387–1397. doi:
    [45] YARDIM-AKAYDIN S, KARAHALIL B, BAYTAS S N. New therapy strategies in the management of breast cancer. Drug Discov Today,2022,27(6): 1755–1762. doi:
    [46] ZHANG L, XIAO H, KARLAN S, et al. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS One,2010,5(12): e15573. doi:
    [47] FÜZÉRY A K, LEVIN J, CHAN M M, et al. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics,2013,10(1): 1–14. doi:
    [48] WU W, GONG H, LIU M, et al. Noninvasive breast tumors detection based on saliva protein surface enhanced Raman spectroscopy and regularized multinomial regression//Proceedings of the 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI). Shenyang: IEEE, 2015: 214-218. koko体育app:doi: 10.1109/BMEI.2015.7401503.
    [49] 李艺, 祝洪澜, 昌晓红, 等. 初诊晚期上皮性卵巢癌的规范化治疗. 现代妇产科进展,2020,29(10): 778–782. doi:
    [50] CHEN D X, SCHWARTZ P E, LI F Q. Saliva and serum CA 125 assays for detecting malignant ovarian tumors. Obstet Gynecol,1990,75(4): 701–704.
    [51] SCHAPHER M, WENDLER O, GRÖSCHL M, et al. Salivary leptin as a candidate diagnostic marker in salivary gland tumors. Clin Chem,2009,55(5): 914–922. doi:
    [52] WANG N, FANG J Y. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol,2023,31(2): 159–172. doi:
    [53] SAZANOV A A, KISELYOVA E V, ZAKHARENKO A A, et al. Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genet,2017,58(2): 231–237. doi:
  • 加载中
表(4)
计量
  • 文章访问数:  883
  • HTML全文浏览量:  28
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-01
  • 修回日期:  2024-05-13
  • 网络出版日期:  2024-05-20
  • 刊出日期:  2024-05-20

目录

    /

    返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!