koko体育app

欢迎来到《koko体育app 学报(医学版)》
消化道道微环保再塑肿癌微大环境影晌肿癌混干的研究分析突破

何军舰 胡长江 杨仕明

何军舰, 胡长江, 杨仕明. 胃肠道微生态重塑肿瘤微环境影响肿瘤干性的研究进展[J]. koko体育app 学报(医学版), 2023, 54(3): 482-490. doi: 10.12182/20230560107
引用本文: 何军舰, 胡长江, 杨仕明. 胃肠道微生态重塑肿瘤微环境影响肿瘤干性的研究进展[J]. koko体育app 学报(医学版), 2023, 54(3): 482-490. doi:
HE Jun-jian, HU Chang-jiang, YANG Shi-ming. Latest Findings on the Effect of Gastrointestinal Microecology Remodeling of Tumor Microenvironment on Tumor Stemness[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 482-490. doi: 10.12182/20230560107
Citation: HE Jun-jian, HU Chang-jiang, YANG Shi-ming. Latest Findings on the Effect of Gastrointestinal Microecology Remodeling of Tumor Microenvironment on Tumor Stemness[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 482-490. doi:

胃肠道微生态重塑肿瘤微环境影响肿瘤干性的研究进展

doi: 
基金项目: 国家重点基础研究发展计划项目(No. 2018YFA0507900)资助
详细信息
    作者简介: 杨仕明,海军军医本科本科大学新桥医阮助化解外科室常务常务委员会,室常务常务委员会医生、博士后生任课老师,博士后深入分析生任课老师。中国医疗设备会助化解病学联合会常务常务委员会、中国医疗设备会助化解病学联合会肿癌学组副负责人、中国医疗设备会张者病学联合会助化解学组常务常务委员会、北京市医疗设备会助化解病学联合会室常务常务委员会常务常务委员会、北京市医生同业公会助化解医生联合会副会张、全军助化解病学专委会常委、政府重心科学实验的学的研究探讨开发计划怎么写总裁合理家。经营助化解医疗设备、上课、科学实验的学的研究探讨30年,具有着牢靠的认识论基础上和多样化的临床检验经验值,深入分析放向为助化解系肿癌的防制举例说明系统,着力推进于胃粘膜癌变的初期诊断仪及DNA缓解、肠道微环境与肿癌疾患相互关系及系统的探索世界深入分析。多次承担风险政府重心科学实验的学的研究探讨开发专项整治1项、政府很自然的合理货币母债券中以公司合作内容1项、主持人政府很自然的合理货币母债券10麦克劳林公式、北京市很好年轻合理货币母债券1项、北京市重心新材料技术攻关内容1项,刊登SCI文献综述80余篇,小编、副小编学术著作各1部;取得政府专利技术1项、获省部级鼓励奖4项、获中国医疗设备头等奖1项。多次评为北京市“前十很好年轻”、总后新材料技术新星、总后杰出讲师、军事部队育才银奖、北京市免押金的首批医疗设备领军伍物优质优秀人才、海军军医本科本科大学拔尖优质优秀人才等特别
    通讯作者:

    E-mail:Yangshiming@tmmu.edu.cn

Latest Findings on the Effect of Gastrointestinal Microecology Remodeling of Tumor Microenvironment on Tumor Stemness

More Information
  • 摘要: 胃肠道微生态(gastrointestinal microecology, GM)系统由胃肠道正常菌群及生活的环境共同构成,对机体健康和诸多疾病的影响已经被广泛研究。GM系统对于肿瘤的影响主要体现在重塑肿瘤微环境(tumor microenvironment, TME)。TME是肿瘤生存的特殊微环境,可通过细胞间接触和分泌因子调节肿瘤细胞的特性,影响肿瘤发生发展。目前认为,肿瘤干细胞(cancer stem cell, CSC)模型是解释肿瘤起源和恶性进展的重要学说,CSC的形成和增殖往往代表着肿瘤侵袭转移和化疗耐药的增加,导致临床不良预后。因此,研究GM系统通过重塑TME而影响CSC特性获得,进而影响肿瘤侵袭转移和化疗耐药的作用和机制,对于临床上理解肿瘤恶性进展和改善肿瘤治疗效果有重要意义。然而由于胃肠道模型单菌含菌水平低、异质性大、远处转移不易溯源等因素,目前的研究还存在很大局限性。本文就GM重塑TME影响肿瘤干性获得及侵袭转移化疗耐药中的研究进展作出综述。
  • koko体育app

    图  1  胃肠道微生态重塑肿瘤微环境激活干性相关通路,促进肿瘤干细胞形成

    Figure  1.  ♔ GM remodels TME to activate stemness-related pathways and promote the formation of CSC

    LPS/LTA: lipopolysaccharide/lipoteichoic acid; SCFA: short chain fatty acid; Treg: regulatory T cell; ILC: innate lymphoid cell.

    图  2  胃肠道微生态在胃癌、结直肠癌肿瘤干性获得中的作用及机制

    Figure  2.  🎃 The role and mechanism of GM in stemness acquisition of gastric cancer and colorectal cancer

    Hp: Helicobacter pylori; CagA: cytotoxin-associated gene A; NF-κB: nuclear factor-kappa B; ICB: immune checkpoint blockade; SCFA: short chain fatty acid; ILC: innate lymphoid cell; IL: interleukin; ABHD5: abhydrolase domain containing 5.

    图  3  胃肠道微生态在其他消化系统肿瘤干性获得中的作用及机制

    Figure  3.  🧸 The role and mechanism of GM in stemness acquisition of other digestive system tumors

    MAMP: microbe-associated molecular patterns; LPS: lipopolysaccharide; LTA: lipoteichoic acid; TLR: Toll-like receptors; STAT3: signal transducer and activator of transcription 3; NF-κB: nuclear factor-kappa B; KRAS♊: kirsten rat sarcoma viral oncogene; Treg: regulatory T; IL: interleukin; TGF-β: transforming growth factor-beta.

    图  4  胃肠道微生态在其他肿瘤干性获得中的作用及机制

    Figure  4.  ✃ The role and mechanism of GM in the stemness acquisition of other tumors

    SCFA: short chain fatty acids; HDAC9: human histone deacetylase 9; Foxp3: forkhead box P3; TLR: Toll-like receptors; NF-κB: nuclear factor-kappa B; IL: interleukin; PAHs: polycyclic aromatic hydrocarbons.
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] De MARTEL C, GEORGES D, BRAY F, et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health,2020,8(2): e180–e190. doi:
    [2] DEJEA C M, FATHI P, CRAIG J M, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science,2018,359(6375): 592–597. doi:
    [3] PARKER T M, GUPTA K, PALMA A M, et al. Cell competition in intratumoral and tumor microenvironment interactions. EMBO J,2021,40(17): e107271. doi:
    [4] KUNTZ S, KRIEGHOFF-HENNING E, KATHER J N, et al. Gastrointestinal cancer classification and prognostication from histology using deep learning: systematic review. Eur J Cancer,2021,155: 200–215. doi:
    [5] CHO Y, KIM Y K. Cancer stem cells as a potential target to overcome multidrug resistance. Front Oncol,2020,10: 764. doi:
    [6] FATEHULLAH A, TERAKADO Y, SAGIRAJU S, et al. A tumour-resident Lgr5+ stem-cell-like pool drives the establishment and progression of advanced gastric cancers. Nat Cell Biol,2021,23(12): 1299–1313. doi:
    [7] LIANG Y, YANG L, XIE J. The role of the hedgehog pathway in chemoresistance of gastrointestinal cancers. Cells,2021,10(8): 2030. doi:
    [8] ZHANG Z Z, YU W X, ZHENG M, et al. PIN1 inhibition sensitizes chemotherapy in gastric cancer cells by targeting stem cell-like traits and multiple biomarkers. Mol Cancer Ther,2020,19(3): 906–919. doi:
    [9] JIANG N, ZOU C, ZHU Y, et al. HIF-1ɑ-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β-catenin and Notch signaling. Theranostics,2020,10(6): 2553–2570. doi:
    [10] BUCKLEY A M, LYNAM-LENNON N, O'NEILL H, et al. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol,2020,17(5): 298–313. doi:
    [11] JU F, ATYAH M M, HORSTMANN N, et al. Characteristics of the cancer stem cell niche and therapeutic strategies. Stem Cell Res Ther,2022,13(1): 233. doi:
    [12] HAN J, WON M, KIM J H, et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem Soc Rev,2020,49(22): 7856–7878. doi:
    [13] YANG L, SHI P, ZHAO G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther,2020,5(1): 8. doi:
    [14] KOGA Y. Microbiota in the stomach and application of probiotics to gastroduodenal diseases. World J Gastroenterol,2022,28(47): 6702–6715. doi:
    [15] STEWART O A, WU F, CHEN Y. The role of gastric microbiota in gastric cancer. Gut Microbes,2020,11(5): 1220–1230. doi:
    [16] HE J, HU W, OUYANG Q, et al. Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Lett,2022,542: 215764. doi:
    [17] KWON S K, PARK J C, KIM K H, et al. Human gastric microbiota transplantation recapitulates premalignant lesions in germ-free mice. Gut,2022,71(7): 1266–1276. doi:
    [18] LARABI A, BARNICH N, NGUYEN H T T. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy,2020,16(1): 38–51. doi:
    [19] MAGER L F, BURKHARD R, PETT N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science,2020,369(6510): 1481–1489. doi:
    [20] YANG W, YU T, HUANG X, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun,2020,11(1): 4457. doi:
    [21] OLIPHANT K, ALLEN-VERCOE E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome,2019,7(1): 91. doi:
    [22] FU A, YAO B, DONG T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell,2022,185(8): 1356–1372.e26. doi:
    [23] ZHENG H T, ZHAO Q Y, DING Y, et al. Investigation of the relationships among respiratory syncytial virus infection, T cell immune response and intestinal flora. Eur Rev Med Pharmacol Sci,2023,27(6): 2671–2678. doi:
    [24] PONZIANI F R, BHOORI S, CASTELLI C, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology,2019,69(1): 107–120. doi:
    [25] HERNÁNDEZ-AQUINO E, MURIEL P. Beneficial effects of naringenin in liver diseases: molecular mechanisms. World J Gastroenterol,2018,24(16): 1679–1707. doi:
    [26] BEHARY J, AMORIM N, JIANG X T, et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun,2021,12(1): 187. doi:
    [27] YANG Q, ZHANG J, ZHU Y. Potential roles of the gut microbiota in pancreatic carcinogenesis and therapeutics. Front Cell Infect Microbiol,2022,12: 872019. doi:
    [28] LIU Y, JIN X, LAN X, et al. SPECT imaging of colorectal cancer by targeting CD 133 receptor with 99mTc-labeled monoclonal antibody. Q J Nucl Med Mol Imaging,2019,63(2): 216–224. doi:
    [29] PENG X, YANG R, SONG J, et al. Calpain2 upregulation regulates emt-mediated pancreatic cancer metastasis via the Wnt/β-Catenin signaling pathway. Front Med (Lausanne),2022,9: 783592. doi:
    [30] GEORGIOU K, MARINOV B, FAROOQI A A, et al. Gut microbiota in lung cancer: where do we stand? Int J Mol Sci,2021,22(19): 10429. doi:
    [31] GUO Y, YUAN W, LYU N, et al. Association Studies on Gut and Lung Microbiomes in Patients with Lung Adenocarcinoma. Microorganisms,2023,11(3): 546. doi:
    [32] LIU F, LI J, GUAN Y, et al. Dysbiosis of the gut microbiome is associated with tumor biomarkers in lung cancer. Int J Biol Sci,2019,15(11): 2381–2392. doi:
    [33] WEDGWOOD S, GERARD K, HALLORAN K, et al. Intestinal dysbiosis and the developing lung: the role of Toll-like receptor 4 in the gut-lung axis. Front Immunol,2020,11: 357. doi:
    [34] TANG J, XU L, ZENG Y, et al. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int Immunopharmacol,2021,91: 107272. doi:
    [35] JENKINS S V, ROBESON M S 2nd, GRIFFIN R J, et al. Gastrointestinal tract dysbiosis enhances distal tumor progression through suppression of leukocyte trafficking. Cancer Res,2019,79(23): 5999–6009. doi:
    [36] DESSEIN R, BAUDUIN M, GRANDJEAN T, et al. Antibiotic-related gut dysbiosis induces lung immunodepression and worsens lung infection in mice. Crit Care,2020,24(1): 611. doi:
    [37] LYNCH S V, VERCELLI D. Microbiota, epigenetics, and trained immunity. convergent drivers and mediators of the asthma trajectory from pregnancy to childhood. Am J Respir Crit Care Med,2021,203(7): 802–808. doi:
    [38] COREY S, KVEDERIS L, KINGSBURY C, et al. Gut microbiome: lactation, childbirth, lung dysbiosis, animal modeling, stem cell treatment, and CNS disorders. CNS Neurol Disord Drug Targets,2019,18(9): 687–694. doi:
    [39] MEHRIAN-SHAI R, REICHARDT J K V, HARRIS C C, et al. The gut-brain axis, paving the way to brain cancer. Trends Cancer,2019,5(4): 200–207. doi:
    [40] Di MODICA M, GARGARI G, REGONDI V, et al. Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res,2021,81(8): 2195–2206. doi:
    [41] SHA S, NI L, STEFIL M, et al. The human gastrointestinal microbiota and prostate cancer development and treatment. Investig Clin Urol,2020,61(Suppl 1): S43–S50. doi:
    [42] MATSUSHITA M, FUJITA K, HAYASHI T, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling. Cancer Res,2021,81(15): 4014–4026. doi:
    [43] KURE A, TSUKIMI T, ISHII C, et al. Gut environment changes due to androgen deprivation therapy in patients with prostate cancer. Prostate Cancer Prostatic Dis,2022. doi:
    [44] WANG R, YANG X, LIU J, et al. Gut microbiota regulates acute myeloid leukaemia via alteration of intestinal barrier function mediated by butyrate. Nat Commun,2022,13(1): 2522. doi:
    [45] DAVAR D, ZAROUR H M. Facts and hopes for gut microbiota interventions in cancer immunotherapy. Clin Cancer Res,2022,28(20): 4370–4384. doi:
    [46] WANG T, FAHRMANN J F, LEE H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab,2018,27(1): 136–150.e5. doi:
    [47] WANG Y P, LI J T, QU J, et al. Metabolite sensing and signaling in cancer. J Biol Chem,2020,295(33): 11938–11946. doi:
    [48] THORSSON V, GIBBS D L, BROWN S D, et al. The immune landscape of cancer. Immunity,2018,48(4): 812–830.e14. doi:
    [49] MENG C, BAI C, BROWN T D, et al. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics,2018,16(1): 33–49. doi:
  • 加载中
图(4)
计量
  • 文章访问数:  848
  • HTML全文浏览量:  36
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-13
  • 修回日期:  2024-04-13
  • 网络出版日期:  2024-05-20
  • 刊出日期:  2024-05-20

目录

    /

    返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!