手术机器人推动神经外科进入新时代
doi:
Robotics Helps Usher in a New Era of Neurosurgery
-
摘要: 手术机器人在神经外科的应用形成了一个发展迅速且引人入胜的新领域,它正在改变神经外科的手术方式。本文就未来神经外科手术机器人发展做一述评。koko体育app 发现,当前在神经外科领域应用手术机器人最广泛的仍然是立体定向手术。手术机器人的应用较以往大大提高了穿刺精度,但其无法在其他类型神经外科手术应用。随着影像技术、机械技术、计算机控制技术、人工智能等领域高度融合发展,手术机器人作为神经外科手术辅助手段必然会紧随时代的需要迎来井喷式发展,逐步向神经外科各个领域发展,使手术更安全、更高效。Abstract: The application of surgical robots in neurosurgery has formed a rapidly developing and fascinating new field that is revolutionizing the way neurosurgeries are performed. Herein, we discussed the prospects of the future development of neurosurgery robots. We found that, at present, surgical robots are most widely used in stereotactic surgeries in the field of neurosurgery. The use of surgical robots has greatly improved puncturing precision, but it cannot be used in other types of neurosurgeries.With the highly integrated development of imaging technology, mechanical technology, computer control technology, and artificial intelligence, surgical robotics will inevitably witness a surge of rapid development in line with the trend of contemporary needs. Surgical robotics will be applied to more fields of neurosurgery in the future, enhancing surgical safety and efficiency.
-
Key words:
- Surgical robotics /
- Neurosurgery /
- Remote control /
- Artificial intelligence
-
koko体育app
表 1 神经外科手术机器人使用情况
Table 1. Current use of neurosurgical robots
No. Neurosurgical robot Year published Procedures Clinical application 1 PUMA 1985 Frameless stereotaxis 1 patient 2 NeuroMate 1987 Frameless stereotaxis, endoscopy FDA approved 3 CRAS 1997 Frameless stereotaxis CFDA approved 4 Evolution 1 2002 Endoscopy 3 patients 5 NeuRobot 2002 Frameless stereotaxis 5 patients 6 NeuroArm 2002 Craniotomy 35 patients 7 Robot hand 2009 Craniotomy 23 patients 8 ROSA 2012 Frameless stereotaxis, Endoscopy FDA approved 9 Expert 2013 Craniotomy 13 patients 10 Endonasal Robot 2016 Endoscopy − 11 iSYS1 2017 Frameless stereotaxis, Endoscopy 39 patients 12 CorPath 2019 Cerebrovascular intervention 15 patients 13 Remebot 2018 Frameless stereotaxis CFDA approved 14 Sinovation 2019 Frameless stereotaxis CFDA approved 下载: 导出CSV
-
[1] KWOH Y S, HOU J, JONCKHEERE E A, et al. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng,1988,35(2): 153–160. doi: [2] LI Q H, ZAMORANO L, PANDYA A, et al. The application accuracy of the NeuroMate robot--A quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg,2002,7(2): 90–98. doi: [3] FARIA C, ERLHAGEN W, RITO M, et al. Review of robotic technology for stereotactic neurosurgery. IEEE Rev Biomed Eng, 2015, 8: 125−137 [2023-03-14]. . [4] DORFER C, MINCHEV G, CZECH T, et al. A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy. J Neurosurg,2017,126(5): 1622–1628. doi: [5] SUTHERLAND G R, LATOUR I, GREER A D. Integrating an image-guided robot with intraoperative MRI: A review of the design and construction of neuroArm. IEEE Eng Med Biol Mag,2008,27(3): 59–65. doi: [6] CSÓKAY A, VALÁLIK I, JOBBÁGY A. Early experiences with a novel (robot hand) technique in the course ofmicroneurosurgery. Surg Neurol,2009,71(4): 469–472. doi: [7] SWANEY P J, GILBERT H B, WEBSTER R J 3rd, et al. Endonasal skull base tumor removal using concentric tube continuum robots: A phantom study. J Neurol Surg B Skull Base,2015,76(2): 145–149. doi: [8] DOULGERIS J J, GONZALEZ-BLOHM S A, FILIS A K, et al. Robotics in neurosurgery: Evolution, current challenges, and compromises. Cancer Control,2015,22(3): 352–359. doi: [9] LOZANO A M, LIPSMAN N, BERGMAN H, et al. Deep brain stimulation: Current challenges and future directions. Nat Rev Neurol,2019,15(3): 148–160. doi: [10] 孟凡刚, 陈玲, 刘钰晔, 等. 中国帕金森病脑深部电刺激疗法专家共识(第二版)解读. 中华神经外科杂志,2021,37(5): 439–442. doi: [11] 陶英群, 巩顺. 神经外科手术机器人辅助脑深部电刺激手术的中国专家共识. 中国微侵袭神经外科杂志,2021,26(7): 291–295. [12] KRAMER D R, HALPERN C H, CONNOLLY P J, et al. Error reduction with routine checklist use during deep brain stimulation surgery. Stereotact Funct Neurosurg,2012,90(4): 255–259. doi: [13] 杨兴旺, 陶英群, 金海, 等. ROSA辅助脑深部电刺激术的精准性研究. 中国微侵袭神经外科杂志,2017,22(2): 60–62. [14] FURLANETTI L, ELLENBOGEN J, GIMENO H, et al. Targeting accuracy of robot-assisted deep brain stimulation surgery in childhood-onset dystonia: A single-center prospective cohort analysis of 45 consecutive cases. J Neurosurg Pediatr,2021,27(6): 677–687. doi: [15] VON LANGSDORFF D, PAQUIS P, FONTAINE D. In vivo measurement of the frame-based application accuracy of the Neuromate neurosurgical robot. J Neurosurg,2015,122(1): 191–194. doi: [16] 乔天富, 吉尔. 机器人施行脑手术—海军总医院为72位患者手术成功. 科学koko体育app ,2000(28): 23. [17] CHANDRA P S, KURWALE N, GARG A, et al. Endoscopy-assisted interhemispheric transcallosal hemispherotomy: Preliminary description of a novel technique. Neurosurgery,2015,76(4): 485–494. doi: [18] SOOD S, MARUPUDI N I, ASANO E, et al. Endoscopic corpus callosotomy and hemispherotomy. J Neurosurg Pediatr,2015,16(6): 681–686. doi: [19] CHUMNANVEJ S, PILLAI B M, CHALONGWONGSE S, et al. Endonasal endoscopic transsphenoidal approach robot prototype: A cadaveric trial. Asian J Surg,2021,44(1): 345–351. doi: [20] CHALONGWONGSE S, CHUMNANVEJ S, SUTHAKORN J. Analysis of endonasal endoscopic transsphenoidal (EET) surgery pathway and workspace for path guiding robot design. Asian J Surg,2019,42(8): 814–822. doi: [21] MENDES PEREIRA V, CANCELLIERE N M, NICHOLSON P, et al. First-in-human, robotic-assisted neuroendovascular intervention. J Neurointerv Surg,2020,12(4): 338–340. doi: [22] SAJJA K C, SWEID A, AL SAIEGH F, et al. Endovascular robotic: Feasibility and proof of principle for diagnostic cerebral angiography and carotid artery stenting. J Neurointerv Surg,2020,12(4): 345–349. doi: [23] KANE G, EGGERS G, BOESECKE R, et al. System design of a hand-held mobile robot for craniotomy. Med Image Comput Comput Assist Interv,2009,12(Pt 1): 402–409. doi: [24] BAST P, POPOVIC A, WU T, et al. Robot- and computer-assisted craniotomy: Resection planning, implant modelling and robot safety. Int J Med Robot,2006,2(2): 168–178. doi: [25] ENGELHARDT M, BAST P, JEBLINK N, et al. Analysis of surgical management of calvarialtumours and first results of a newly designed robotic trepanation system. Minim Invasive Neurosurg,2006,49(2): 98–103. doi: [26] HONG W C, TSAI J C, CHANG S D, et al. Robotic skull base surgery via supraorbital keyhole approach: A cadaveric study. Neurosurgery,2013,72(Suppl 1): 33–38. doi: [27] DALLAN I, CASTELNUOVO P, SECCIA V, et al. Combined transnasal transcervical robotic dissection of posterior skull base: Feasibility in a cadaveric model. Rhinology,2012,50(2): 165–170. doi: [28] BLANCO R G, BOAHENE K. Robotic-assisted skull base surgery: Preclinical study. J Laparoendosc Adv Surg Tech A,2013,23(9): 776–782. doi: [29] DIMITRAKAKIS E, AYLMORE H, LINDENROTH L, et al. Robotic handle prototypes for endoscopic endonasal skull base surgery: Pre-clinical randomised controlled trial of performance and ergonomics. Ann Biomed Eng,2022,50(5): 549–563. doi: [30] CHAUVET D, MISSISTRANO A, HIVELIN M, et al. Transoral robotic-assisted skull base surgery to approach the sella turcica: Cadaveric study. Neurosurg Rev,2014,37(4): 609–617. doi: [31] FERNANDEZ-NOGUERAS F J, KATATI M J, ARRAEZ SANCHEZ M A, et al. Transoral robotic surgery of the central skull base: Preclinical investigations. Eur Arch Otorhinolaryngol,2014,271(6): 1759–1763. doi: [32] CARRAU R L, PREVEDELLO D M, DE LARA D, et al. Combined transoral robotic surgery and endoscopic endonasal approach for the resection of extensive malignancies of the skull base. Head Neck,2013,35(11): E351–E358. doi: [33] CHAUVET D, HANS S, MISSISTRANO A, et al. Transoral robotic surgery for sellar tumors: First clinical study. J Neurosurg,2017,127(4): 941–948. doi: [34] 世界帕金森日. “5G+医疗”带来新希望. 世界电子元器件, 2021(4): 3−4. -

表(1)
计量
- 文章访问数: 923
- HTML全文浏览量: 500
- PDF下载量: 176
- 被引次数: 0