koko体育app

欢迎来到《koko体育app 学报(医学版)》
脑胶质瘤微环境中非癌症血细胞的效果理论研究最新动态

koko体育app: 左明荣 koko体育app: 刘艳辉

左明荣, 刘艳辉. 脑胶质瘤微环境中非肿瘤细胞的作用研究进展[J]. koko体育app 学报(医学版), 2022, 53(4): 573-578. doi: 10.12182/20220760204
引用本文: 左明荣, 刘艳辉. 脑胶质瘤微环境中非肿瘤细胞的作用研究进展[J]. koko体育app 学报(医学版), 2022, 53(4): 573-578. doi:
ZUO Ming-rong, LIU Yan-hui. Latest Research Findings on the Role of Non-Tumor Cells in Glioma Microenvironment[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(4): 573-578. doi: 10.12182/20220760204
Citation: ZUO Ming-rong, LIU Yan-hui. Latest Research Findings on the Role of Non-Tumor Cells in Glioma Microenvironment[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(4): 573-578. doi:

栏目: 文献综述

脑胶质瘤微环境中非肿瘤细胞的作用研究进展

doi: 
基金项目: 华西医院专职博后基金(No. 2020HXBH159)资助
详细信息
    通讯作者:

    E-mail:koko体育app:liuyh@dikai.net.cn

Latest Research Findings on the Role of Non-Tumor Cells in Glioma Microenvironment

More Information
  • 摘要: 胶质母细胞瘤治疗效果不佳,以肿瘤细胞为中心的治疗策略难以遏制胶质母细胞瘤的恶性进展。除肿瘤细胞之外,胶质瘤微环境中存在大量非肿瘤细胞以及可溶性细胞因子。非肿瘤细胞包括内皮细胞、周细胞、小胶质细胞/巨噬细胞、间充质细胞、星形胶质细胞、神经元等;上述非肿瘤细胞成分与胶质瘤细胞形成一个有机体并调控胶质瘤的恶性进展。胶质瘤微环境的研究已取得一定进展,有助于开发全新的以非肿瘤细胞为靶点的治疗方法并改善胶质瘤患者预后。本文总结了研究较为广泛的内皮细胞、周细胞、小胶质细胞/巨噬细胞、星形胶质细胞、神经元和间充质细胞与胶质瘤细胞之间的关系以及相应的转化研究,展望了未来基于肿瘤微环境治疗胶质瘤的挑战与机遇。
  • [1] OSTROM Q T, GITTLEMAN H, TRUITT G, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol,2018,20(Suppl_4): iv1–iv86. doi:
    [2] BALLMAN K V, BUCKNER J C, BROWN P D, et al. The relationship between six-month progression-free survival and 12-month overall survival end points for phase Ⅱ trials in patients with glioblastoma multiforme. Neuro Oncol,2007,9(1): 29–38. doi:
    [3] WONG E T, HESS K R, GLEASON M J, et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase Ⅱ clinical trials. J Cli Oncol,1999,17(8): 2572–2578. doi:
    [4] LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol,2021,23(8): 1231–1251. doi:
    [5] QUAIL D F, JOYCE J A. Microenvironmental regulation of tumor progression and metastasis. Nat Med,2013,19(11): 1423–1437. doi:
    [6] ALBINI A, SPORN M B. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer,2007,7(2): 139–147. doi:
    [7] AHGI M, COHEN K S, KLEIN R J, et al. Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res,2006,66(18): 9054–9064. doi:
    [8] XIN M, CHEN Y S, CHEN F R, et al. Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro Oncol,2017(8): iii55–iii55. doi:
    [9] BERTOLINI F, SHAKED Y, MANCUSO P, et al. The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nat Rev Cancer,2006,6(11): 835–845. doi:
    [10] CARLSON J C, GUTIERREZ M C, LOZZI B, et al. Identification of diverse tumor endothelial cell populations in malignant glioma. Neuro Oncol,2020,23(6): 932–944. doi:
    [11] FARIN A, SUZUKI S O, WEIKER M, et al. Transplanted glioma cells migrate and proliferate on host brain vasculature: A dynamic analysis. Glia,2006,53(8): 799–808. doi:
    [12] CHARLES N, OZAWA T, SQUATRITO M, et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell,2010,6(2): 141–152. doi:
    [13] BAO S, WU Q L, SATHORNSUMETEE S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res,2006,66(16): 7843–7848. doi:
    [14] WANG Z M, YUAN Y F, XIONG J, et al. The Hippo-TAZ axis mediates vascular endothelial growth factor C in glioblastoma-derived exosomes to promote angiogenesis. Cancer Lett,2021,513: 1–13. doi:
    [15] HUANG H, GEORGANAKI M, CONZE L L, et al. ELTD1-deletion reduces vascular abnormality and improves T-cell recruitment after PD-1 blockade in glioma. Neuro Oncol,2021,24(3): 398–411. doi:
    [16] VEERAVAGU A, BABABEYGY S R, KALANI M Y, et al. The cancer stem cell-vascular niche complex in brain tumor formation. Stem Cells Dev,2008,17(5): 859–867. doi:
    [17] LAMAGNA C, BERGERS G. The bone marrow constitutes a reservoir of pericyte progenitors. J Leukoc Biol,2006,80(4): 677–681. doi:
    [18] HELLSTRM M, KALEN M, LINDAHL P, et al. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development,1999,126(14): 3047–3055. doi:
    [19] HUANG F J, YOU W K, BONALDO P, et al. Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev Biol,2010,344(2): 1035–1046. doi:
    [20] BERTA S C, MARIA G A, BEATRIZ H, et al. Tumor-derived pericytes driven by eGFR mutations govern the vascular and immune microenvironment of gliomas. Cancer Res,2021,81(8): 2142–2156. doi:
    [21] CHENG L, HUANG Z, ZHOU W C, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell,2013,153(1): 139–152. doi:
    [22] VALDOR R, DAVID G B, DOLORES R, et al. Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy. Proc Natl Acad Sci U S A,2019,116(41): 20655–20665. doi:
    [23] OUDENAARDEN C, SJLUND J, PIETRAS K. Upregulated functional gene expression programmes in tumour pericytes mark progression in patients with low-grade glioma. Mol Oncol,2021,16(2): 405–421. doi:
    [24] ZHANG X N, YANG K D, CHEN C, et al. Pericytes augment glioblastoma cell resistance to temozolomide through CCL5-CCR5 paracrine signaling. Cell Res,2021,31(10): 1072–1087. doi:
    [25] HICKEY W F, KIMURA H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science,1988,239(4837): 290–292. doi:
    [26] STREIT W J, CONDE J R, FENDRICK S E, et al. Role of microglia in the central nervous system's immune response. Neurol Res,2005,27(7): 685–691. doi:
    [27] SOULAS C, DONAHUE R E, DUNBAR C E, et al. Genetically modified cd34+ hematopoietic stem cells contribute to turnover of brain perivascular macrophages in long-term repopulated primates. Am J Pathol,2009,174(5): 1808–1817. doi:
    [28] MANTOVANI A, SICA A. Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr Opi Immunol,2010,22(2): 231–237. doi:
    [29] NISHIE A, ONO M, SHONO T, et al. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res,1999,5(5): 1107–1113.
    [30] KOMOHARA Y, OHNISHI K, KURATSU J, et al. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol,2010,216(1): 15–24. doi:
    [31] HOELZINGER D B, DEMUTH T, BERENS M E. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst,2007,99(21): 1583–1593. doi:
    [32] MARKOVIC D S, VINNAKOTA K, CHIRASANI S, et al. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci U S A,2009,106(30): 12530–12535. doi:
    [33] ENE C I, KREUSER S A, JUNG M, et al. Anti-PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro Oncol,2020,22(5): 639–651. doi:
    [34] OKEEFE G M, NGUYEN V T, BENVENISTE E N. Class Ⅱ transactivator and class Ⅱ MHC gene expression in microglia: Modulation by the cytokines TGF-beta, IL-4, IL-13 and IL-10. Eur J Immunol,2010,29(4): 1275–1285. doi:
    [35] BADIE B, SCHARTNER J, PRABAKARAN S, et al. Expression of Fas ligand by microglia: Possible role in glioma immune evasion. J Neuroimmunol,2001,120(1): 19–24. doi:
    [36] WANG Q W, SUN L H, ZHANG Y, et al. MET overexpression contributes to STAT4-PD-L1 signaling activation associated with tumor-associated, macrophages-mediated immunosuppression in primary glioblastomas. J Immunother Cancer,2021,9(10): e002451[2022-10-25] . http://doi.org/10.1136/jitc-2021-002451. doi:
    [37] SORONIEW M V, VINTERS H V. Astrocytes: Biology and pathology. Acta Neuropathol,2010,119(1): 7–35. doi:
    [38] YONG V W, YONG F P, RUIJS T C, et al. Expression and modulation of HLA-DR on cultured human adult astrocytes. J Neuropathol Exp Neurol,1991,50(1): 16–28. doi:
    [39] MARCHETTI D, LI J, SHEN R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res,2000,60(17): 4767–4770.
    [40] SIN W C, AFTAB Q, BECHBERGER J F, et al. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene,2016,35(12): 1504–1516. doi:
    [41] LIN Q, BALASUBRAMANIAN K, FAN D, et al. Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia,2010,12(9): 748–754. doi:
    [42] KOSTIANOVSKY A M, MAIER L M, ANDERSON R C, et al. Astrocytic regulation of human monocytic/microglial activation. J Immunol,2008,181(8): 5425–5432. doi:
    [43] HEILAND D H, RAVI V M, BEHRINGER S P, et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun, 2019, 10(1): 2541[2022-10-25]. .
    [44] SCHERER H J. Structural Development in Gliomas. Cancer, 1938, 34: 333-351[2022-10-25]. .
    [45] MIRESCU C, GOULD E. Stress and adult neurogenesis. Hippocampus,2006,16(3): 233–238. doi:
    [46] VENKATESH H S, JOHUNG T B, CARETTI V, et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell,2015,161(4): 803–816. doi:
    [47] CHANDA S, HALE W D, ZHANG B, et al. Unique versus redundant functions of neuroligin genes in shaping excitatory and inhibitory synapse properties. J Neurosci,2017,37(29): 6816–6836. doi:
    [48] VENKATESH H S, TAM L T, WOO P J, et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature,2017,549(7673): 533–537. doi:
    [49] VENKATESH H S, MORISHITA W, GERAGHTY A C, et al. Electrical and synaptic integration of glioma into neural circuits. Nature,2019,573(7775): 539–545. doi:
    [50] KALLURI R. The biology and function of fibroblasts in cancer. Nat Rev Cancer,2016,16(9): 582–598. doi:
    [51] LORENZ K, SICKER M, SCHMELZER E, et al. Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol,2008,17(11): 925–932. doi:
    [52] KANG S G, SHINOJIMA N, HOSSAIN A, et al. Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery,2010,67(3): 711–720. doi:
    [53] HO I, TOH H C, NG W H, et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells,2013,31(1): 146–155. doi:
    [54] SHAHAR T, ROZOVSKI U, HESS K R, et al. Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival. Neuro Oncol,2017,19(5): 660–668. doi:
    [55] KONG B H, SHIN H D, KIM S H, et al. Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma. Int J Oncol,2013,42(5): 1754–1762. doi:
    [56] HOSSAIN A, GUMIN J, GAO F, et al. Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL‐6/gp130/STAT3 pathway. Stem Cells,2015,33(8): 2400–2415. doi:
    [57] JAIN R K, TOMASO E D, DUDA D G, et al. Angiogenesis in brain tumours. Nat Rev Neurosci,2007,8(8): 610–622. doi:
    [58] PAZE-RIBES M, ALLEN E, HUDOCK J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell,2009,15(3): 232–239. doi:
    [59] NORDEN A D, YOUNG G S, SETAYESH K, et al. Bevacizumab for recurrent malignant gliomas efficacy, toxicity, and patterns of recurrence. Neurology,2008,70(10): 779–787. doi:
    [60] KIM S K, KIM S U, PARK I H, et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res,2006,12(18): 5550–5556. doi:
    [61] NAKAMIZO A, MARINI F, AMANO T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res,2005,65(8): 3307–3318. doi:
    [62] NICHOLA S, COLMAN H, GROOT J F D, et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium phase Ⅱ study. Neuro Oncol,2015,18(4): 557–564. doi:
    [63] SADAHIRO H, KANG K D, GIBSON J T, et al. Activation of the receptor tyrosine kinase AXL regulates the immune microenvironment in glioblastoma. Cancer Res,2018,78(11): 3002–3013. doi:
    [64] THOMAS R P, NAGPAL S, MICHAEL I V, et al. Macrophage exclusion after radiation therapy (MERT): A first in human phase I/II trial using a CXCR4 inhibitor in glioblastoma. Clin Cancer Res,2019,25(23): 6948–6957. doi:
  • 加载中
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-20
  • 修回日期:  2022-12-05
  • 刊出日期:  2023-07-22

目录

    /

    返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?646a7d1033ff411d5d7be270f3397897"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!