koko体育app

欢迎来到《koko体育app 学报(医学版)》
王瀚, 王跃龙, 刘志勇, 等. 颅内肿瘤的靶向药物治疗[J]. koko体育app 学报(医学版), 2022, 53(4): 564-572. doi: 10.12182/20220760102
引用本文: 王瀚, 王跃龙, 刘志勇, 等. 颅内肿瘤的靶向药物治疗[J]. koko体育app 学报(医学版), 2022, 53(4): 564-572. doi:
WANG Han, WANG Yue-long, LIU Zhi-yong, et al. Targeted Drug Therapy for Intracranial Tumors[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(4): 564-572. doi: 10.12182/20220760102
Citation: WANG Han, WANG Yue-long, LIU Zhi-yong, et al. Targeted Drug Therapy for Intracranial Tumors[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(4): 564-572. doi:

栏目: 文献综述

颅内肿瘤的靶向药物治疗

doi: 
基金项目: koko体育app 华西医院学科卓越发展1·3·5工程项目(No. ZYJC18007)资助
详细信息
    通讯作者:

    E-mail:koko体育app:xujg@dikai.net.cn

Targeted Drug Therapy for Intracranial Tumors

More Information
  • 摘要: 颅内肿瘤严重影响了人类的身心健康,由于肿瘤的性质与生长部位的不同,因此对颅内肿瘤患者进行个体化、特异性的治疗已成为当下研究的热点,而颅内肿瘤的靶向药物治疗作为精准医学的重要分支,更是成为了科学家重点攻坚的对象。目前分子生物学及基因组学的迅速发展,为肿瘤的精准治疗提供了相应的靶点。但是由于血脑屏障、血肿瘤屏障阻碍了药物到达颅内靶点,因此如何提升颅内药物浓度成为了目前靶向治疗颅内肿瘤的关键所在。本文总结了不同颅内肿瘤的靶向药物治疗的现状,探讨了对于不同颅内肿瘤靶向药物治疗的效果,以期为未来靶向药物对颅内肿瘤的治疗提供新的思考。
  • koko体育app

    图  1  ღ 胶质瘤、脑膜瘤、垂体瘤、神经鞘瘤和颅咽管瘤目前所常用的靶向信号通路,以及每种信号通路常用的靶向药物

    Figure  1.  Commonly used target 🐼signaling pathways for glioma, meningioma, pituitary adenoma, schwannoma and craniopharyngioma, as well as commonly used target drugs for each pathway

    AKT: Protein kinase; B-Raf: Proto-oncogene; COX-2: Cyclooxygenase-2; CTLA-4: Cytotoxic T lymphocyte-associated antigen-4; EGF: Epidermal growth factor; EGFR: Epidermal growth factor receptor; ERK: Extracellular signal regulated kinase; FGF: Fibroblast growth factor; FGFR: Fibroblast growth factor receptor; HDAC: Histone deacetylase; MAPK: Mitogen-activated protein kinase; MEK: Mitogen activates extracellular signal-regulated kinases; IDH: Isocitrate dehydrogenase; mTOR: Mammalian target of rapamycin; NF2: Neurofibromin 2; PDGF: Platelet-derived growth factor; PDGFR: Platelet-derived growth factor receptor; PD-1: Programmed cell death protein1; PD-L1: Programmed cell death-ligand 1; PI3K: Phosphatidylinositol- 3-kinases; PIP: Phosphatidylinositol phosphate; PR: Progesterone receptor; PTEN: Phosphatase and tensin homolog deleted on chromosome ten; RAS: Rat sarcoma; RTKs: Receptor tyrosine kinase; VEGF: Vascular endothelial growth factor; VEGFR: Vascular endothelial growth factor receptor.
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?646a7d1033ff411d5d7be270f3397897"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] HOWLADER N. SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations) based on November 2011 SEER data submission, posted to the SEER web site, 2012. (2013-08-20) [2022-10-01]. .
    [2] OSTROM Q T, NIRAV P, GINO C, et al. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol,2020,22(12 Suppl 2): iv1–iv96. doi:
    [3] BREM S S, BIERMAN P J, BLACK P, et al. Central nervous system cancers: Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw,2005,3(5): 644–690. doi:
    [4] PUCHNER M J, HERMANN H D, BERGER J, et al. Surgery, tamoxifen, carboplatin, and radiotherapy in the treatment of newly diagnosed glioblastoma patients. J Neurooncol,2000,49(2): 147–155. doi:
    [5] STUPP R, MASON W P, VANDEN B M J, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med,2005,352(10): 987–996. doi:
    [6] PARSONS D W, JONES S, ZHANG X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science,2008,321(5897): 1807–1812. doi:
    [7] CARRASCO G E, SACEDA M, MARTINEZ L I. Role of receptor tyrosine kinases and their ligands in glioblastoma. Cells,2014,3(2): 199–235. doi:
    [8] HEIMBERGER A B, HLATKY R, SUKI D, et al. Prognostic effect of epidermal growth factor receptor and EGFRvⅢ in glioblastoma multiforme patients. Clin Cancer Res,2005,11(4): 1462–1466. doi:
    [9] SIEGELIN M D, BORCZUK A C. Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab Invest,2014,94(2): 129–137. doi:
    [10] HAMER P. Small molecule kinase inhibitors in glioblastoma: a systematic review of clinical studies. Neuro Oncol,2010,12(3): 304–316. doi:
    [11] RICH J N, REARDON DA, PEERY T, et al. Phase Ⅱ trial of gefitinib in recurrent glioblastoma. J Clin Oncol,2004,22(1): 133–142. doi:
    [12] FOULADI M, STEWART C F, BLANEY S M, et al. A molecular biology and phase Ⅱ trial of lapatinib in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Neurooncol,2013,114(2): 173–179. doi:
    [13] GILBERT M R, DIGNAM J J, ARMSTRONG T S, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med,2014,370(8): 699–708. doi:
    [14] CHINOT O L, WICK W, MASON W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med,2014,370(8): 709–722. doi:
    [15] BRENNAN C W, VERHAAK R G, MCKENNA A, et al. The somatic genomic landscape of glioblastoma. Cell,2013,155(2): 462–477. doi:
    [16] CHINNAIYAN P, WON M, WEN P Y, et al. RTOG 0913: A phase 1 study of daily everolimus (RAD001) in combination with radiation therapy and temozolomide in patients with newly diagnosed glioblastoma. Int J Radiat Oncol Biol Phys,2013,86(5): 880–884. doi:
    [17] MA D J, GALANIS E, ANDERSON S K, et al. A phase Ⅱ trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro Oncol,2015,17(9): 1261–1269. doi:
    [18] LASSEN U, SORENSEN M, GAZIELl T B, et al. Phase Ⅱ study of bevacizumab and temsirolimus combination therapy for recurrent glioblastoma multiforme. Anticancer Res,2013,33(4): 1657–1660.
    [19] PARK J W, BARRETTE A M, WANG W, et al. Mapk pathway inhibition sensitizes to immunotherapy in braf-mutant gliomas. Neuro Oncol,2021,23(Suppl 1): i3–i4. doi:
    [20] ROCHET N M, DRONCA R S, KOTTSCHADE L A, et al. Melanoma brain metastases and vemurafenib: Need for further investigation. Mayo Clin Proc,2012,87(10): 976–981. doi:
    [21] GARRY C, JAN-MICHAEL W, VERONIKA D, et al. Dabrafenib treatment in a patient with an epithelioid glioblastoma and BRAF V600E mutation. Int J Mol Sci,2018,19(4): 1090. doi:
    [22] FLAHERTY K T, INFANTE J R, DAUD A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med,2012,367(18): 1694–1703. doi:
    [23] NAZARIAN R, SHI H, WANG Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature,2010,468(7326): 973–977. doi:
    [24] HYMAN D M, PUZANOV I, SUBBIAH V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med,2015,373(8): 726–736. doi:
    [25] LOUVEAU A, SMIRNOV I, KEYES T J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature,2015,523(7560): 337–341. doi:
    [26] PREUSSER M, LIM M, HAFLER D A, et al. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol,2015,11(9): 504–514. doi:
    [27] ZHU G, ZHANG Q, ZHANG J, et al. Targeting tumor-associated antigen: A promising CAR-T therapeutic strategy for glioblastoma treatment. Front Pharmacol, 2021, 12: 661606[2022-10-01]. .
    [28] KUPPNER M C, HAMOU M F, BODMER S, et al. The glioblastoma-derived T-cell suppressor factor/transforming growth factor beta 2 inhibits the generation of lymphokine-activated killer (LAK) cells. Int J Cancer,1988,42(4): 562–567. doi:
    [29] BRANDES A A, CARPENTIER A F, KESARI S, et al. A Phase Ⅱ randomized study of galunisertib monotherapy or galunisertib plus omustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol,2016,18(8): 1146–1156. doi:
    [30] NIE E, JIN X, MIAO F, et al. TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT. Neuro Oncol,2021,23(3): 435–446. doi:
    [31] DRANOF G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer,2004,4(1): 11–22. doi:
    [32] OKADA H, LIEBERMAN F S, WALTER K A, et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fbroblasts in the treatment of patients with malignant gliomas. J Transl Med, 2007, 5: 67[2022-10-03]. . doi: .
    [33] GROVES M D, PUDUVALLI V K, GILBERT M R, et al. Two phase Ⅱ trials of temozolomide with interferon-alpha2b (pegylated and non-pegylated) in patients with recurrent glioblastoma multiforme. Br J Cancer,2009,101(4): 615–620. doi:
    [34] WAKABAYASHI T, KAYAMA T, NISHIKAWA R, et al. A multicenter phase I trial of combination therapy with interferon-β and temozolomide for high-grade gliomas (INTEGRA study): The fnal report. J Neurooncol,2011,104(2): 573–577. doi:
    [35] FARKKILA M, JAASKELAINEN J, KALLIO M, et al. Randomised, controlled study of intratumoral recombinant gamma-interferon treatment in newly diagnosed glioblastoma. Br J Cancer,1994,70(1): 138–141. doi:
    [36] WOLF J E A, WAGNER S, REINERT C, et al. Maintenance treatment with interferon-gamma and low-dose cyclophosphamide for pediatric high-grade glioma. J Neurooncol,2006,79(3): 315–321. doi:
    [37] OSTROM Q T, GION C, HALEY G, et al. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol,2019,21(Suppl 5): v1–v100. doi:
    [38] SARAF S, MCCARTHY B J, VILLANO J L. Update on meningiomas. Oncologist,2011,16(11): 1604–1613. doi:
    [39] RAIZER J J, GRIMM S A, RADEMAKER A, et al. A phase Ⅱ trial of PTK787/ZK 222584 in recurrent or progressive radiation and surgery refractory meningiomas. J Neuro Oncol,2014,117(1): 93–101. doi:
    [40] REARDON D A, NORDEN A D, DESJARDINS A, et al. Phase Ⅱ study of Gleevec® plus hydroxyurea (HU) in adults with progressive or recurrent meningioma. J Neuro Oncol,2012,106: 409–415. doi:
    [41] KALEY T J, WEN P, SCHIFF D, et al. Phase Ⅱ trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro Oncol,2015,17(1): 116–121. doi:
    [42] ANDERSSON U, GUO D, MALMER B, et al. Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas. Acta Neuropathol,2004,108(2): 135–142. doi:
    [43] NORDEN A D, RAIZER J J, ABREY L E, et al. Phase Ⅱ trials of erlotinib or gefitinib in patients with recurrent meningioma. J Neuro Oncol,2010,96(2): 211–217. doi:
    [44] RAGEL B T, JENSEN R L. Aberrant signaling pathways in meningiomas. J Neurooncol,2010,99(3): 315–324. doi:
    [45] DASANU C A, ALVAREZ A J, LIMONADI F M, et al. Bevacizumab in refractory higher-grade and atypical meningioma: The current state of affairs. Expert Opin Biol Ther,2019,19(2): 99–104. doi:
    [46] SCERRATI A, MONGAEDI L, VISANI J, et al. The controversial role of Bevacizumab in the treatment of patientswith intracranial meningioma: A comprehensive literature review. Expert Rev Anticancer Ther,2020,20(3): 197–203. doi:
    [47] ABEDALTHAGAFI M, BI W L, AIZER A A, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol,2016,18(5): 649–655. doi:
    [48] WELLER M, ROTH P, SAHM F, et al. Durable control of metastatic AKT1-mutant WHO grade 1 meningothelial meningioma by the AKT inhibitor, AZD5363. J Natl Cancer Inst,2017,109(3): 1–4. doi:
    [49] PACHOW D, ANDRAE N, KLIESE N, et al. mTORC1 inhibitors suppress meningioma growth in mouse models. Clin Cancer Res,2013,19(5): 1180–1189. doi:
    [50] JI Y L, RANKIN C, GRUNBERG S, et al. Double-blind phase Ⅲ randomized trial of the antiprogestin agent mifepristone in the treatment of unresectable meningioma: SWOG S9005. J Clin Oncol,2015,33(34): 4093–4098. doi:
    [51] FOIANI G, GUELFI G, CHIARADIA E, et al. Somatostatin receptor 2 expression in canine meningioma. J Comp Pathol,2019,166: 59–68. doi:
    [52] GRAILLON T, SANSON M, CAMPELLO C, et al. Everolimus and octreotide for patients with recurrent meningioma: Results from the phase Ⅱ CEVOREM trial. Clin Cancer Res,2020,26(3): 552–557. doi:
    [53] BANSKOTA S, ADAMSON D C. Pituitary adenomas: From diagnosis to therapeutics. Biomedicines,2021,9(5): 494. doi:
    [54] MCCORMACK A I, DEKKERS O M, PETERSENN S, et al. Treatment of aggressive pituitary tumours and carcinomas: Results of a European Society of Endocrinology (ESE) survey 2016. Eur J Endocrinol,2018,178(3): 265–276. doi:
    [55] BEN S A, COOPER O. Role of tyrosine kinase inhibitors in the treatment of pituitary tumours: From bench to bedside. Curr Opin Endocrinol Diabetes Obes,2017,24(4): 301–305. doi:
    [56] RAVEROT G, MD I L I E, LASOLLE H, et al. Aggressive pituitary tumours and pituitary carcinomas. Nat Rev Endocrinol,2021,17(11): 671–684. doi:
    [57] ILIE M D, HELENE L, GERALD R. Emerging and novel treatments for pituitary tumors. J Clin Med,2019,8(8): 1107. doi:
    [58] ALSHAIKH O M, ASA S L, METE O, et al. An institutional experience of tumor progression to pituitary carcinoma in a 15-year cohort of 1055 consecutive pituitary neuroendocrine tumors. Endocr Pathol,2019,30(2): 118–127. doi:
    [59] WANG P F, WANG T J, YANG Y K, et al. The expression profile of PD-L1 and CD8+ lymphocyte in pituitary adenomas indicating or immunotherapy. J Neurooncol,2018,139: 89–95. doi:
    [60] DUHAMEL C, ILIE M D, SALLE H, et al. Immunotherapy in corticotroph and lactotroph aggressive tumors and carcinomas: Two case reports and a review of the literature. J Pers Med,2020,10(3): 88. doi:
    [61] LAMB L S, SIM H W, MCCORMACK A I. Case report: A case of pituitary carcinoma treated with sequential dual immunotherapy and vascular endothelial growth factor inhibition therapy. Front Endocrinol (Lausanne), 2020, 11: 576027[2022-10-05]. .
    [62] SOL B, FILETTE J D, AWADA G, et al. Immune checkpoint inhibitor therapy for ACTH-secreting pituitary carcinoma: A new emerging treatment? Eur J Endocrinol,2021,184(1): K1–K5. doi:
    [63] MAJD N, WAGUESPACK S G, JANKU F, et al. Efficacy of pembrolizumab in patients with pituitary carcinoma: Report of four cases from a phase Ⅱ study. J Immunother Cancer, 2020, 8(2): e001532[2022-10-05]. . doi: .
    [64] LONG J F, ZHANG Y, HUANG X, et al. A review of drug therapy in vestibular Schwannoma. Drug Des Devel Ther,2021,15: 75–1585. doi:
    [65] KARAJANNIS M A, LEGAULT G, HAGIWARA M, et al. Phase Ⅱ trial of lapatinib in adult and pediatric patients with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro Oncol,2012,14(9): 1163–1170. doi:
    [66] PLOTKIN S R, STEMMER-RACHAMIMOV A O, BARKER F G, et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med,2009,361(4): 358–367. doi:
    [67] JAMES M F, STIVISON E, EAUCHAMP R, et al. Regulation of mTOR complex 2 signaling in neurofibromatosis 2-deficient target cell types. Mol Cancer Res,2012,10(5): 649–659. doi:
    [68] GOUTAGNY S, RAYMOND E, ESPOSITO-FARESE M, et al. Phase Ⅱ study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas. J Neurooncol,2015,122(2): 313–320. doi:
    [69] DILWALI S, KAO S Y, FUJITA T, et al. Nonsteroidal anti-inflammatory medications are cytostatic against human vestibular schwannomas. Transl Res,2015,166(1): 1–11. doi:
    [70] NAKANISHI M, ROSENBERG D W. Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol,2013,35(2): 123–137. doi:
    [71] KANDATHIL C K, DILWALI S, WU C C, et al. Aspirin intake correlates with halted growth of sporadic vestibular Schwannoma in vivo. Otol Neurotol,2014,35(2): 353–357. doi:
    [72] MULLER H L, MERCHANT T E, WARMUTH-METZ M, et al. Craniopharyngioma. Nat Rev Dis Primers,2019,5(1): 75. doi:
    [73] BRASTIANOS P K, TAYLOR-WEINER A, Manley P E, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet,2014,46(2): 161–165. doi:
    [74] HOLSKEN A, GEBHARDT M, BUCHFELDER M, et al. EGFR signaling regulates tumor cell migration in craniopharyngiomas. Clin Cancer Res,2011,17(13): 4367–4377. doi:
    [75] BRASTIANOS P K, SHANKAR G M, GILL C M, et al. Dramatic response of BRAF V600E mutant papillary craniopharyngioma to targeted therapy. J Natl Cancer Inst,2015,108(2): djv310. doi:
    [76] ROSTAMI E, NYSTRM P W, LIBARD S, et al. Recurrent papillary craniopharyngioma with BRAFV600E mutation treated with neoadjuvant-targeted therapy. Acta Neurochir,2017,159(11): 2217–2221. doi:
    [77] COY S, RSSHID R, LIN J R, et al. Multiplexed immunofluorescence reveals potential PD-1/PD-L1 pathway vulnerabilities in craniopharyngioma. Neuro Oncol,2018,20(8): 1101–1112. doi:
  • 加载中
图(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-26
  • 修回日期:  2023-06-02
  • 刊出日期:  2023-07-22

目录

    /

    返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?646a7d1033ff411d5d7be270f3397897"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!