[1] |
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet,2017,390(10100): 1211–1259. doi:
|
[2] |
RIGHOLT A J, JEVDJEVIC M, MARCENES W, et al. Global-, regional-, and country-level economic impacts of dental diseases in 2015. J Dent Res,2018,97(5): 501–507. doi:
|
[3] |
王兴.第四次全国口腔健康流行病学调查报告. 北京: 人民卫生出版社, 2018:11-44.
|
[4] |
FAKHRUDDIN K S, NGO H C, SAMARANAYAKE L P. Cariogenic microbiome and microbiota of the early primary dentition: A contemporary overview. Oral Dis,2019,25(4): 982–995. doi:
|
[5] |
HAJISHENGALLIS E, PARSAEI Y, KLEIN M I, et al. Advances in the microbial etiology and pathogenesis of early childhood caries. Mol Oral Microbiol,2017,32(1): 24–34. doi:
|
[6] |
TAKAHASHI N, NYVAD B. The role of bacteria in the caries process: Ecological perspectives. J Dent Res,2011,90(3): 294–303. doi:
|
[7] |
HORIUCHI M, WASHIO J, MAYANAGI H, et al. Transient acid-impairment of growth ability of oral Streptococcus, Actinomyces, and Lactobacillus: A possible ecological determinant in dental plaque a possible ecological determinant in dental plaque. Oral Microbiol Immunol,2009,24(4): 319–324. doi:
|
[8] |
KRZYSCIAK W, JURCZAK A, KOSCIELNIAK D, et al. The virulence of Streptococcus mutans and the ability to form biofilms to form biofilms. Eur J Clin Microbiol Infect Dis,2014,33(4): 499–515. doi:
|
[9] |
KLEIN M I, HWANG G, SANTOS P H, et al. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol, 2015, 5: 10[2022-02-17].
|
[10] |
LEMOS J A, PALMER S R, ZENG L, et al. The Biology of Streptococcus mutans. Microbiol Spectr, 2019, 7(1): 10.1128/microbiolspec.GPP3-0051-2018[2022-02-17].
|
[11] |
XIAO J, KLEIN M I, FALSETTA M L, et al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog, 2012, 8(4): e1002623[2022-02-17].
|
[12] |
GUAN N, LIU L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol,2020,104(1): 51–65. doi:
|
[13] |
PENG X, ZHANG Y, BAI G, et al. Cyclic di-AMP mediates biofilm formation. Mol Microbiol,2016,99(5): 945–959. doi:
|
[14] |
MOSTERD C, MOINEAU S. Characterization of a Type Ⅱ-A CRISPR-Cas System in Streptococcus mutans. mSphere, 2020, 5(3): e00235−20[2022-02-17].
|
[15] |
HU X, WANG Y, GAO L, et al. The impairment of methyl metabolism from luxS mutation of Streptococcus mutans. Front Microbiol, 2018, 9: 404[2022-02-17].
|
[16] |
LIU S, WEI Y, ZHOU X, et al. Function of alanine racemase in the physiological activity and cariogenicity of Streptococcus mutans. Sci Rep,2018,8(1): 5984. doi:
|
[17] |
WERLANG C A, CHEN W G, AOKI K, et al. Mucin O-glycans suppress quorum-sensing pathways and genetic transformation in Streptococcus mutans. Nat Microbiol,2021,6(5): 574–583. doi:
|
[18] |
LIAO S, BITOUN J P, NGUYEN A H, et al. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation. Mol Oral Microbiol,2015,30(4): 255–268. doi:
|
[19] |
TANG B, GONG T, ZHOU X, et al. Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity. Arch Oral Biol,2019,99: 190–197. doi:
|
[20] |
WEN Z T, SCOTT-ANNE K, LIAO S, et al. Deficiency of BrpA in Streptococcus mutans reduces virulence in rat caries model. Mol Oral Microbiol,2018,33(5): 353–363. doi:
|
[21] |
AHN S J, RICE K C. Understanding the Streptococcus mutans Cid/Lrg system through CidB function. Appl Environ Microbiol,2016,82(20): 6189–6203. doi:
|
[22] |
KHARA P, BISWAS S, BISWAS I. Induction of clpP expression by cell-wall targeting antibiotics in Streptococcus mutans. Microbiology (Reading),2020,166(7): 641–653. doi:
|
[23] |
ZU Y, LI W, WANG Q, et al. ComDE two-component signal transduction systems in oral Streptococci: Structure and function. Curr Issues Mol Biol,2019,32: 201–258. doi:
|
[24] |
XIANG Z, LI Z, REN Z, et al. EzrA, a cell shape regulator contributing to biofilm formation and competitiveness in Streptococcus mutans. Mol Oral Microbiol,2019,34(5): 194–208. doi:
|
[25] |
KOVACS C J, FAUSTOFERRI R C, QUIVEY R J. RgpF is required for maintenance of stress tolerance and virulence in Streptococcus mutans. J Bacteriol, 2017, 199(24): e00497−17[2022-02-17]. .
|
[26] |
SHANKAR M, HOSSAIN M S, BISWAS I. Pleiotropic regulation of virulence genes in Streptococcus mutans by the conserved small protein SprV. J Bacteriol, 2017, 199(8): e00847−16[2022-02-17]. .
|
[27] |
LEI L, LONG L, YANG X, et al. The VicRK two-component system regulates Streptococcus mutans virulence. Curr Issues Mol Biol,2019,32: 167–200. doi:
|
[28] |
ZENG L, BURNE R A. Essential roles of the sppRA fructose-phosphate phosphohydrolase operon in carbohydrate metabolism and virulence expression by Streptococcus mutans. J Bacteriol, 2019, 201(2): e00586−18[2022-02-17].
|
[29] |
RAINEY K, MICHALEK S M, WEN Z T, et al. Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans. Appl Environ Microbiol, 2019, 85(5): e02247−18[2022-02-17].
|
[30] |
ZENG L, CHAKRABORTY B, FARIVAR T, et al. Coordinated regulation of the EII (Man) and fruRKI operons of Streptococcus mutans by global and fructose-specific pathways. Appl Environ Microbiol, 2017, 83(21): e01403−17[2022-02-17].
|
[31] |
PALMER S R, REN Z, HWANG G, et al. Streptococcus mutans yidC1 and yidC2 impact cell envelope biogenesis, the biofilm matrix, and biofilm biophysical properties. J Bacteriol, 2019, 201(1): e00396−18[2022-02-17].
|
[32] |
STRECKFUSS J L, PERKINS D, HORTON I M, et al. Fluoride resistance and adherence of selected strains of Streptococcus mutans to smooth surfaces after exposure to fluoride. J Dent Res,1980,59(2): 151–158. doi:
|
[33] |
BROWN L R, WHITE J O, HORTON I M, et al. Effect of continuous fluoride gel use on plaque fluoride retention and microbial activity. J Dent Res,1983,62(6): 746–751. doi:
|
[34] |
CAI Y, LIAO Y, BRANDT B W, et al. The Fitness cost of fluoride resistance for different Streptococcus mutans strains in biofilms. Front Microbiol, 2017, 8: 1630[2022-02-17].
|
[35] |
盛江筠, 黄正蔚, 刘正. 变形链球菌耐氟菌株与亲代菌株质子移位膜ATP酶活性的比较. 上海口腔医学,2005(1): 71–73. doi:
|
[36] |
LIAO Y, BRANDT B W, LI J, et al. Fluoride resistance in Streptococcus mutans: A mini review. J Oral Microbiol, 2017, 9(1): 1344509[2022-02-17].
|
[37] |
LIAO Y, CHEN J, BRANDT B W, et al. Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. PLoS One, 2015, 10(4): e122630[2022-02-17].
|
[38] |
YU J, WANG Y, HAN D, et al. Identification of Streptococcus mutans genes involved in fluoride resistance by screening of a transposon mutant library. Mol Oral Microbiol,2020,35(6): 260–270. doi:
|
[39] |
DUTTA T, SRIVASTAVA S. Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms. Gene,2018,656: 60–72. doi:
|
[40] |
XIA L, XIA W, LI S, et al. Identification and expression of small non-coding RNA, L10-leader, in different growth phases of Streptococcus mutans. Nucleic Acid Ther,2012,22(3): 177–186. doi:
|
[41] |
LEE H J, HONG S H. Analysis of microRNA-size, small RNAs in Streptococcus mutans by deep sequencing. FEMS Microbiol Lett,2012,326(2): 131–136. doi:
|
[42] |
MAO M Y, YANG Y M, LI K Z, et al. The rnc gene promotes exopolysaccharide synthesis and represses the vicRKX gene expressions via microRNA-size small RNAs in Streptococcus mutans. Front Microbiol, 2016, 7: 687[2022-02-17].
|
[43] |
LIU S, TAO Y, YU L, et al. Analysis of small RNAs in Streptococcus mutans under acid stress—A new insight for caries research. Int J Mol Sci,2016,17(9): 1529. doi:
|
[44] |
LIU S S, ZHU W H, ZHI Q H, et al. Analysis of sucrose-induced small RNAs in Streptococcus mutans in the presence of different sucrose concentrations. Appl Microbiol Biotechnol,2017,101(14): 5739–5748. doi:
|
[45] |
ZHU W, LIU S, LIU J, et al. High-throughput sequencing identification and characterization of potentially adhesion-related small RNAs in Streptococcus mutans. J Med Microbiol,2018,67(5): 641–651. doi:
|
[46] |
LIU S, ZHOU Y, TAO Y, et al. Effect of different glucose concentrations on small RNA levels and adherence of Streptococcus mutans. Curr Microbiol,2019,76(11): 1238–1246. doi:
|
[47] |
YIN L, ZHU W, CHEN D, et al. Small noncoding RNA sRNA0426 is involved in regulating biofilm formation in Streptococcus mutans. Microbiologyopen, 2020, 9(9): e1096[2022-02-17].
|
[48] |
GALLO P M, RAPSINSKI G J, WILSON R P, et al. Amyloid-DNA composites of bacterial biofilms stimulate autoimmunity. Immunity,2015,42(6): 1171–1184. doi:
|
[49] |
TAGLIALEGNA A, LASA I, VALLE J. Amyloid structures as biofilm matrix scaffolds. J Bacteriol,2016,198(19): 2579–2588. doi:
|
[50] |
OLI M W, OTOO H N, CROWLEY P J, et al. Functional amyloid formation by Streptococcus mutans. Microbiology,2012,158(Pt 12): 2903–2916.
|
[51] |
BESINGI R N, WENDERSKA I B, SENADHEERA D B, et al. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. Microbiology,2017,163(4): 488–501. doi:
|
[52] |
HEIM K P, SULLAN R M, CROWLEY P J, et al. Identification of a supramolecular functional architecture of Streptococcus mutans adhesin P1 on the bacterial cell surface. J Biol Chem,2015,290(14): 9002–9019. doi:
|
[53] |
RIVIERE G, PENG E Q, BROTGANDEL A, et al. Characterization of an intermolecular quaternary interaction between discrete segments of the Streptococcus mutans adhesin P1 by NMR spectroscopy. FEBS J,2020,287(12): 2597–2611. doi:
|
[54] |
CHEN D, CAO Y, YU L, et al. Characteristics and influencing factors of amyloid fibers in S. mutans biofilm. AMB Express,2019,9(1): 31. doi:
|
[55] |
SCHWARTZ K, GANESAN M, PAYNE D E, et al. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol Microbiol,2016,99(1): 123–134. doi:
|
[56] |
CAO Y, LIN H. Characterization and function of membrane vesicles in Gram-positive bacteria. Appl Microbiol Biotechnol,2021,105(5): 1795–1801. doi:
|
[57] |
LIAO S, KLEIN M I, HEIM K P, et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol,2014,196(13): 2355–2366. doi:
|
[58] |
SENPUKU H, NAKAMURA T, IWABUCHI Y, et al. Effects of complex DNA and MVs with GTF extracted from Streptococcus mutans on the oral biofilm. Molecules,2019,24(17): 3131. doi:
|
[59] |
MORALES-APARICIO J C, LARA V P, MISHRA S, et al. The impacts of sortase A and the 4′-phosphopantetheinyl transferase homolog Sfp on Streptococcus mutans extracellular membrane vesicle biogenesis. Front Microbiol, 2020, 11: 570219[2022-02-17].
|
[60] |
WEN Z T, JORGENSEN A N, HUANG X, et al. Multiple factors are involved in regulation of extracellular membrane vesicle biogenesis in Streptococcus mutans. Mol Oral Microbiol,2021,36(1): 12–24. doi:
|
[61] |
CAO Y, ZHOU Y, CHEN D, et al. Proteomic and metabolic characterization of membrane vesicles derived from Streptococcus mutans at different pH values. Appl Microbiol Biotechnol,2020,104(22): 9733–9748. doi:
|
[62] |
WU R, TAO Y, CAO Y, et al. Streptococcus mutans membrane vesicles harboring glucosyltransferases augment candida albicans biofilm development. Front Microbiol, 2020, 11: 581184[2022-02-17].
|
[63] |
XIAO J, HUANG X, ALKHERS N, et al. Candida albicans and early childhood caries: A systematic review and meta-analysis. Caries Res,2018,52(1/2): 102–112. doi:
|
[64] |
DU Q, REN B, HE J, et al. Candida albicans promotes tooth decay by inducing oral microbial dysbiosis. ISME J,2021,15(3): 894–908. doi:
|
[65] |
KHOURY Z H, VILA T, PUTHRAN T R, et al. The role of Candida albicans secreted polysaccharides in augmenting Streptococcus mutans adherence and mixed biofilm formation: In vitro and in vivo studies. Front Microbiol, 2020, 11: 307[2022-02-17]. .
|
[66] |
FALSETTA M L, KLEIN M I, COLONNE P M, et al. Symbiotic relationship between Streptococcus mutans andCandida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun,2014,82(5): 1968–1981. doi:
|