欢迎来到《koko体育app 学报(医学版)》

koko体育app: 陈冬茹 林焕彩

陈冬茹, 林焕彩. 变异链球菌致龋机制研究新进展[J]. koko体育app 学报(医学版), 2022, 53(2): 208-213. doi: 10.12182/20220360508
引用本文: 陈冬茹, 林焕彩. 变异链球菌致龋机制研究新进展[J]. koko体育app 学报(医学版), 2022, 53(2): 208-213. doi:
CHEN Dong-ru, LIN Huan-cai. Research Updates: Cariogenic Mechanism of Streptococcus mutans[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2022, 53(2): 208-213. doi: 10.12182/20220360508
Citation: CHEN Dong-ru, LIN Huan-cai. Research Updates: Cariogenic Mechanism of Streptococcus mutans[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2022, 53(2): 208-213. doi:


基金项目: 国家自然科学基金(No.81970928)资助


Research Updates: Cariogenic Mechanism of Streptococcus mutans

More Information
  • 摘要: 龋病患病率居高不下,已成为累及全球社会公共卫生的重大负担。微生物是诱发龋病的主要原因,其中变异链球菌是目前公认的主要致龋菌之一。近年来,研究技术的进步使得学术界对变异链球菌致龋相关DNA、RNA和蛋白层面的研究更加深入,也对变异链球菌表面结构和细菌外基质组成有了新的认识。本文总结了近年来变异链球菌致龋机制相关研究的新进展,以期为未来开发以变异链球菌为靶标的防龋制剂揭示更多的靶点和可能途径,推动龋病预防事业的发展。
  • [1] GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet,2017,390(10100): 1211–1259. doi:
    [2] RIGHOLT A J, JEVDJEVIC M, MARCENES W, et al. Global-, regional-, and country-level economic impacts of dental diseases in 2015. J Dent Res,2018,97(5): 501–507. doi:
    [3] 王兴.第四次全国口腔健康流行病学调查报告. 北京: 人民卫生出版社, 2018:11-44.
    [4] FAKHRUDDIN K S, NGO H C, SAMARANAYAKE L P. Cariogenic microbiome and microbiota of the early primary dentition: A contemporary overview. Oral Dis,2019,25(4): 982–995. doi:
    [5] HAJISHENGALLIS E, PARSAEI Y, KLEIN M I, et al. Advances in the microbial etiology and pathogenesis of early childhood caries. Mol Oral Microbiol,2017,32(1): 24–34. doi:
    [6] TAKAHASHI N, NYVAD B. The role of bacteria in the caries process: Ecological perspectives. J Dent Res,2011,90(3): 294–303. doi:
    [7] HORIUCHI M, WASHIO J, MAYANAGI H, et al. Transient acid-impairment of growth ability of oral Streptococcus, Actinomyces, and Lactobacillus: A possible ecological determinant in dental plaque a possible ecological determinant in dental plaque. Oral Microbiol Immunol,2009,24(4): 319–324. doi:
    [8] KRZYSCIAK W, JURCZAK A, KOSCIELNIAK D, et al. The virulence of Streptococcus mutans and the ability to form biofilms to form biofilms. Eur J Clin Microbiol Infect Dis,2014,33(4): 499–515. doi:
    [9] KLEIN M I, HWANG G, SANTOS P H, et al. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol, 2015, 5: 10[2022-02-17].
    [10] LEMOS J A, PALMER S R, ZENG L, et al. The Biology of Streptococcus mutans. Microbiol Spectr, 2019, 7(1): 10.1128/microbiolspec.GPP3-0051-2018[2022-02-17].
    [11] XIAO J, KLEIN M I, FALSETTA M L, et al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog, 2012, 8(4): e1002623[2022-02-17].
    [12] GUAN N, LIU L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol,2020,104(1): 51–65. doi:
    [13] PENG X, ZHANG Y, BAI G, et al. Cyclic di-AMP mediates biofilm formation. Mol Microbiol,2016,99(5): 945–959. doi:
    [14] MOSTERD C, MOINEAU S. Characterization of a Type Ⅱ-A CRISPR-Cas System in Streptococcus mutans. mSphere, 2020, 5(3): e00235−20[2022-02-17].
    [15] HU X, WANG Y, GAO L, et al. The impairment of methyl metabolism from luxS mutation of Streptococcus mutans. Front Microbiol, 2018, 9: 404[2022-02-17].
    [16] LIU S, WEI Y, ZHOU X, et al. Function of alanine racemase in the physiological activity and cariogenicity of Streptococcus mutans. Sci Rep,2018,8(1): 5984. doi:
    [17] WERLANG C A, CHEN W G, AOKI K, et al. Mucin O-glycans suppress quorum-sensing pathways and genetic transformation in Streptococcus mutans. Nat Microbiol,2021,6(5): 574–583. doi:
    [18] LIAO S, BITOUN J P, NGUYEN A H, et al. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation. Mol Oral Microbiol,2015,30(4): 255–268. doi:
    [19] TANG B, GONG T, ZHOU X, et al. Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity. Arch Oral Biol,2019,99: 190–197. doi:
    [20] WEN Z T, SCOTT-ANNE K, LIAO S, et al. Deficiency of BrpA in Streptococcus mutans reduces virulence in rat caries model. Mol Oral Microbiol,2018,33(5): 353–363. doi:
    [21] AHN S J, RICE K C. Understanding the Streptococcus mutans Cid/Lrg system through CidB function. Appl Environ Microbiol,2016,82(20): 6189–6203. doi:
    [22] KHARA P, BISWAS S, BISWAS I. Induction of clpP expression by cell-wall targeting antibiotics in Streptococcus mutans. Microbiology (Reading),2020,166(7): 641–653. doi:
    [23] ZU Y, LI W, WANG Q, et al. ComDE two-component signal transduction systems in oral Streptococci: Structure and function. Curr Issues Mol Biol,2019,32: 201–258. doi:
    [24] XIANG Z, LI Z, REN Z, et al. EzrA, a cell shape regulator contributing to biofilm formation and competitiveness in Streptococcus mutans. Mol Oral Microbiol,2019,34(5): 194–208. doi:
    [25] KOVACS C J, FAUSTOFERRI R C, QUIVEY R J. RgpF is required for maintenance of stress tolerance and virulence in Streptococcus mutans. J Bacteriol, 2017, 199(24): e00497−17[2022-02-17]. .
    [26] SHANKAR M, HOSSAIN M S, BISWAS I. Pleiotropic regulation of virulence genes in Streptococcus mutans by the conserved small protein SprV. J Bacteriol, 2017, 199(8): e00847−16[2022-02-17]. .
    [27] LEI L, LONG L, YANG X, et al. The VicRK two-component system regulates Streptococcus mutans virulence. Curr Issues Mol Biol,2019,32: 167–200. doi:
    [28] ZENG L, BURNE R A. Essential roles of the sppRA fructose-phosphate phosphohydrolase operon in carbohydrate metabolism and virulence expression by Streptococcus mutans. J Bacteriol, 2019, 201(2): e00586−18[2022-02-17].
    [29] RAINEY K, MICHALEK S M, WEN Z T, et al. Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans. Appl Environ Microbiol, 2019, 85(5): e02247−18[2022-02-17].
    [30] ZENG L, CHAKRABORTY B, FARIVAR T, et al. Coordinated regulation of the EII (Man) and fruRKI operons of Streptococcus mutans by global and fructose-specific pathways. Appl Environ Microbiol, 2017, 83(21): e01403−17[2022-02-17].
    [31] PALMER S R, REN Z, HWANG G, et al. Streptococcus mutans yidC1 and yidC2 impact cell envelope biogenesis, the biofilm matrix, and biofilm biophysical properties. J Bacteriol, 2019, 201(1): e00396−18[2022-02-17].
    [32] STRECKFUSS J L, PERKINS D, HORTON I M, et al. Fluoride resistance and adherence of selected strains of Streptococcus mutans to smooth surfaces after exposure to fluoride. J Dent Res,1980,59(2): 151–158. doi:
    [33] BROWN L R, WHITE J O, HORTON I M, et al. Effect of continuous fluoride gel use on plaque fluoride retention and microbial activity. J Dent Res,1983,62(6): 746–751. doi:
    [34] CAI Y, LIAO Y, BRANDT B W, et al. The Fitness cost of fluoride resistance for different Streptococcus mutans strains in biofilms. Front Microbiol, 2017, 8: 1630[2022-02-17].
    [35] 盛江筠, 黄正蔚, 刘正. 变形链球菌耐氟菌株与亲代菌株质子移位膜ATP酶活性的比较. 上海口腔医学,2005(1): 71–73. doi:
    [36] LIAO Y, BRANDT B W, LI J, et al. Fluoride resistance in Streptococcus mutans: A mini review. J Oral Microbiol, 2017, 9(1): 1344509[2022-02-17].
    [37] LIAO Y, CHEN J, BRANDT B W, et al. Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. PLoS One, 2015, 10(4): e122630[2022-02-17].
    [38] YU J, WANG Y, HAN D, et al. Identification of Streptococcus mutans genes involved in fluoride resistance by screening of a transposon mutant library. Mol Oral Microbiol,2020,35(6): 260–270. doi:
    [39] DUTTA T, SRIVASTAVA S. Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms. Gene,2018,656: 60–72. doi:
    [40] XIA L, XIA W, LI S, et al. Identification and expression of small non-coding RNA, L10-leader, in different growth phases of Streptococcus mutans. Nucleic Acid Ther,2012,22(3): 177–186. doi:
    [41] LEE H J, HONG S H. Analysis of microRNA-size, small RNAs in Streptococcus mutans by deep sequencing. FEMS Microbiol Lett,2012,326(2): 131–136. doi:
    [42] MAO M Y, YANG Y M, LI K Z, et al. The rnc gene promotes exopolysaccharide synthesis and represses the vicRKX gene expressions via microRNA-size small RNAs in Streptococcus mutans. Front Microbiol, 2016, 7: 687[2022-02-17].
    [43] LIU S, TAO Y, YU L, et al. Analysis of small RNAs in Streptococcus mutans under acid stress—A new insight for caries research. Int J Mol Sci,2016,17(9): 1529. doi:
    [44] LIU S S, ZHU W H, ZHI Q H, et al. Analysis of sucrose-induced small RNAs in Streptococcus mutans in the presence of different sucrose concentrations. Appl Microbiol Biotechnol,2017,101(14): 5739–5748. doi:
    [45] ZHU W, LIU S, LIU J, et al. High-throughput sequencing identification and characterization of potentially adhesion-related small RNAs in Streptococcus mutans. J Med Microbiol,2018,67(5): 641–651. doi:
    [46] LIU S, ZHOU Y, TAO Y, et al. Effect of different glucose concentrations on small RNA levels and adherence of Streptococcus mutans. Curr Microbiol,2019,76(11): 1238–1246. doi:
    [47] YIN L, ZHU W, CHEN D, et al. Small noncoding RNA sRNA0426 is involved in regulating biofilm formation in Streptococcus mutans. Microbiologyopen, 2020, 9(9): e1096[2022-02-17].
    [48] GALLO P M, RAPSINSKI G J, WILSON R P, et al. Amyloid-DNA composites of bacterial biofilms stimulate autoimmunity. Immunity,2015,42(6): 1171–1184. doi:
    [49] TAGLIALEGNA A, LASA I, VALLE J. Amyloid structures as biofilm matrix scaffolds. J Bacteriol,2016,198(19): 2579–2588. doi:
    [50] OLI M W, OTOO H N, CROWLEY P J, et al. Functional amyloid formation by Streptococcus mutans. Microbiology,2012,158(Pt 12): 2903–2916.
    [51] BESINGI R N, WENDERSKA I B, SENADHEERA D B, et al. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. Microbiology,2017,163(4): 488–501. doi:
    [52] HEIM K P, SULLAN R M, CROWLEY P J, et al. Identification of a supramolecular functional architecture of Streptococcus mutans adhesin P1 on the bacterial cell surface. J Biol Chem,2015,290(14): 9002–9019. doi:
    [53] RIVIERE G, PENG E Q, BROTGANDEL A, et al. Characterization of an intermolecular quaternary interaction between discrete segments of the Streptococcus mutans adhesin P1 by NMR spectroscopy. FEBS J,2020,287(12): 2597–2611. doi:
    [54] CHEN D, CAO Y, YU L, et al. Characteristics and influencing factors of amyloid fibers in S. mutans biofilm. AMB Express,2019,9(1): 31. doi:
    [55] SCHWARTZ K, GANESAN M, PAYNE D E, et al. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol Microbiol,2016,99(1): 123–134. doi:
    [56] CAO Y, LIN H. Characterization and function of membrane vesicles in Gram-positive bacteria. Appl Microbiol Biotechnol,2021,105(5): 1795–1801. doi:
    [57] LIAO S, KLEIN M I, HEIM K P, et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol,2014,196(13): 2355–2366. doi:
    [58] SENPUKU H, NAKAMURA T, IWABUCHI Y, et al. Effects of complex DNA and MVs with GTF extracted from Streptococcus mutans on the oral biofilm. Molecules,2019,24(17): 3131. doi:
    [59] MORALES-APARICIO J C, LARA V P, MISHRA S, et al. The impacts of sortase A and the 4′-phosphopantetheinyl transferase homolog Sfp on Streptococcus mutans extracellular membrane vesicle biogenesis. Front Microbiol, 2020, 11: 570219[2022-02-17].
    [60] WEN Z T, JORGENSEN A N, HUANG X, et al. Multiple factors are involved in regulation of extracellular membrane vesicle biogenesis in Streptococcus mutans. Mol Oral Microbiol,2021,36(1): 12–24. doi:
    [61] CAO Y, ZHOU Y, CHEN D, et al. Proteomic and metabolic characterization of membrane vesicles derived from Streptococcus mutans at different pH values. Appl Microbiol Biotechnol,2020,104(22): 9733–9748. doi:
    [62] WU R, TAO Y, CAO Y, et al. Streptococcus mutans membrane vesicles harboring glucosyltransferases augment candida albicans biofilm development. Front Microbiol, 2020, 11: 581184[2022-02-17].
    [63] XIAO J, HUANG X, ALKHERS N, et al. Candida albicans and early childhood caries: A systematic review and meta-analysis. Caries Res,2018,52(1/2): 102–112. doi:
    [64] DU Q, REN B, HE J, et al. Candida albicans promotes tooth decay by inducing oral microbial dysbiosis. ISME J,2021,15(3): 894–908. doi:
    [65] KHOURY Z H, VILA T, PUTHRAN T R, et al. The role of Candida albicans secreted polysaccharides in augmenting Streptococcus mutans adherence and mixed biofilm formation: In vitro and in vivo studies. Front Microbiol, 2020, 11: 307[2022-02-17]. .
    [66] FALSETTA M L, KLEIN M I, COLONNE P M, et al. Symbiotic relationship between Streptococcus mutans andCandida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun,2014,82(5): 1968–1981. doi:
  • 加载中
  • 文章访问数:  1459
  • HTML全文浏览量:  213
  • PDF下载量:  246
  • 被引次数: 0
  • 收稿日期:  2022-08-04
  • 修回日期:  2023-02-07
  • 刊出日期:  2023-03-22



    koko体育app: 返回文章
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); !function(p){"use strict";!function(t){var s=window,e=document,i=p,c="".concat("https:"===e.location.protocol?"https://":"http://","sdk.51.la/js-sdk-pro.min.js"),n=e.createElement("script"),r=e.getElementsByTagName("script")[0];n.type="text/javascript",n.setAttribute("charset","UTF-8"),n.async=!0,n.src=c,n.id="LA_COLLECT",i.d=n;var o=function(){s.LA.ids.push(i)};s.LA?s.LA.ids&&o():(s.LA=p,s.LA.ids=[],o()),r.parentNode.insertBefore(n,r)}()}({id:"K9y7iMpaU8NS42Fm",ck:"K9y7iMpaU8NS42Fm"}); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!