koko体育app

欢迎来到《koko体育app 学报(医学版)》
促甲状腺性激素与吐液微自然生态对应性科研

董婷 罗俊元 黄正蔚

董婷, 罗俊元, 黄正蔚. 促甲状腺激素与唾液微生态相关性研究[J]. koko体育app 学报(医学版), 2022, 53(2): 226-234. doi: 10.12182/20220360502
引用本文: 董婷, 罗俊元, 黄正蔚. 促甲状腺激素与唾液微生态相关性研究[J]. koko体育app 学报(医学版), 2022, 53(2): 226-234. doi:
DONG Ting, LUO Jun-yuan, HUANG Zheng-wei. Correlational Study of Thyroid-Stimulating Hormone and Salivary Microecology[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 226-234. doi: 10.12182/20220360502
Citation: DONG Ting, LUO Jun-yuan, HUANG Zheng-wei. Correlational Study of Thyroid-Stimulating Hormone and Salivary Microecology[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 226-234. doi:

促甲状腺激素与唾液微生态相关性研究

doi: 
基金项目: 国家自然科学基金(No. 82071104)资助
详细信息
    通讯作者:

    E-mail:huangzhengwei@shsmu.edu.cn

Correlational Study of Thyroid-Stimulating Hormone and Salivary Microecology

More Information
  • 摘要:   目的  探讨健康人群唾液微生态组成与其促甲状腺激素(TSH)水平之间的关系。  方法  将纳入的健康人群根据TSH水平分为TSH高组(n=22,TSH 3.00~4.20 mIU/L)和TSH低组(n=24,TSH 0.60~1.80 mIU/L),通过临床和实验室检查对相关的临床和生化指标进行测量分析,并分别对两类人群的唾液样本进行16S rDNA测序和生物信息学分析。  结果  TSH高组和TSH低组的相关临床和生化指标差异并无统计学意义(P>0.05),TSH水平较高的个体的唾液微生物组具有较高的丰度和物种多样性。偏最小二乘判别分析(PLS-DA)显示TSH高组和TSH低组的唾液微生态组β多样性的差异(Adonis,P=0.0460)。Wilcoxon秩和检验和LEFSe分析发现梭杆菌属的丰度在TSH高组和TSH低组间的差异有统计学意义。  结论  健康人群中高TSH和低TSH水平受试者存在不同的唾液微生态组成,其中梭杆菌属在TSH高组和TSH低组中差异最为显著。
  • koko体育app

    图  1  TSH低组和TSH高组唾液微生物群落的多样性和物种组成

    Figure  1.  🅘 Diversity and species composition of the salivary microbiota in low-TSH and high-TSH groups

    A: Chao index and Simpson index of operational taxonomic unit (OTU) level (*Pᩚᩚᩚᩚᩚᩚ⁤⁤⁤⁤ᩚ⁤⁤⁤⁤ᩚ⁤⁤⁤⁤ᩚ𒀱ᩚᩚᩚ<0.05); B: Community bar plot analysis showing the top 10 phyla with highest abundance; C: A heatmap of the abundance of top 50 abundant genera in the two groups.

    图  2  TSH低组和TSH高组的唾液微生物群落结构比较

    Figure  2.  🍸 Comparison of the salivary community structure of in low-TSH and high-TSH groups

    A: PCoA showed separation in the horizontal coordinate axis (R2=0.036 3, P♈=0.046); B: PLS-DA showed visible separation in the horizontal coordinate axis; C: Co-occurrence networks of the top 50 abundant genera in low-TSH group; D: Co-occurrence networks of the top 50 abundant genera in high-TSH group. The size of the node indicates the mean relative abundance of the corresponding genus. The same color represents the genera belonging to the same phylum. The thickness of the connecting lines corresponds to the coefficient values. The red line or the green line indicates a positive or negative correlation, respectively.

    图  3  TSH低组和TSH高组的唾液微生物中具有丰度显著差异的种属

    Figure  3.  🐟 Discriminative species with maximum abundance difference in low-TSH and high-TSH groups

    A: Discriminative species on genus level were identified using Wilcoxon rank-sum test; B: Cladogram for taxonomic representation based on LEfSe. Red indicates enrichment in samples from the low-TSH group, and blue indicates the taxa enriched in samples from the high-TSH group; C: Histogram of the linear discriminant analysis (LDA) scores was calculated for the selected taxa (LDA>2.0, P<0.05).

    图  4  TSH低组和TSH高组的临床变量和唾液微生物组之间的关系

    Figure  4.  ✃ Associations between clinical variables and the salivary microbiome in low-TSH and high-TSH groups

    A: RDA reflects the relationship between the salivary microbiome and clinical variables; red indicates samples from the low-TSH group, and blue indicates samples from the high-TSH group; the red arrow indicates the quantitative clinical variables, and the length of the arrow can represent the degree of influence (interpretation) of the clinical variables on the species data; the angle between the arrows represents positive and negative correlation (acute angle: positive correlation; obtuse angle: negative correlation; right angle: no correlation); B: Heatmap of Spearman correlation analysis between the top 50 abundant salivary microbiota and clinical variables. R value shows in different colors; red indicates positive correlation while blue indicates negative correlation. The darker the color is, the greater the correlation coefficient. Species clustering trees were presented on the left side of the heat map (*P<0.05, **P<0.01, ***P<0.001).

    表  1  受试者的临床和生化指标结果

    Table  1.   ✱ Clinical and biochemical results of subjects

    VariableLow-TSH group (n=24)High-TSH group (n=22)P
    Age/yr. 52.42±3.87 53.14±5.56 0.6102
    (Male/female)/case 10/14 10/12 0.7957
    TSH/(mIU/L) 1.52±0.24 3.54±0.36 <0.0001
    T3/(nmol/L) 1.75±0.27 1.76±0.19 0.9353
    T4/(nmol/L) 110.00±16.23 103.20±13.54 0.1354
    TPOAb/(IU/mL) 21.11±12.44 34.90±53.64 0.2272
    TC/(mmol/L) 5.70±0.97 5.73±0.91 0.9097
    TG/(mmol/L) 1.62±1.08 1.57±0.72 0.8542
    LDL-C/(mmol/L) 3.39±0.71 3.44±0.58 0.7913
    HDL-C/(mmol/L) 1.33±0.32 1.35±0.34 0.8009
    GGT/(U/L) 21.79±13.59 31.50±23.22 0.0874
    FPG/(mmol/L) 5.04±0.54 5.22±0.82 0.3642
    FSI/(mU/L) 4.92±2.45 4.78±2.00 0.8363
    HOMA-IR 1.10±0.56 1.13±0.53 0.8541
    HbA1C/% 5.39±0.34 5.34±0.54 0.6987
    UA/(μmol/L) 337.20±114.00 309.10±81.82 0.3465
    Height/cm 160.90±8.44 162.40±9.14 0.5734
    BMI/(kg/m2) 23.29±2.74 23.81±2.43 0.4994
    NC/cm 35.55±3.11 36.34±3.98 0.4567
    WC/cm 81.33±8.92 82.09±4.85 0.7754
    HC/cm 95.76±5.47 95.20±4.85 0.7147
    SBP/mmHg 139.50±22.50 131.00±16.83 0.1527
    DBP/mmHg 84.21±10.70 81.64±12.70 0.4602
      TSH: Thyroid-stimulating hormone; T3: Triiodothyronine; T4: Tetraiodothyronine; TPOAb: Thyroid peroxidase antibody; TC: Total cholesterol; TG: Total triglycerides; LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density lipoprotein cholesterol; GGT: Gamma-glutamyl transpeptidase; FPG: Fasting plasma glucose; FSI:Fasting serum insulin; HOMA-IR: Homeostatic model assessment of insulin resistance; HbA1C: Hemoglobin A1; UA: Uric acid; BMI: Body mass index; NC: Neck circumference; WC: Waist circumference; HC: Hip circumference; SBP: Systolic blood pressure; DBP: Diastolic blood pressure.
    下载: 导出CSV
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] UDOVCIC M, PENA R H, PATHAM B, et al. Hypothyroidism and the Heart. Methodist Debakey Cardiovasc J,2017,13(2): 55–59. doi:
    [2] RUHLA S, WEICKERT M O, ARAFAT A M, et al. A high normal TSH is associated with the metabolic syndrome. Clin Endocrinol (Oxf),2010,72(5): 696–701. doi:
    [3] GAO L, XU T, HUANG G, et al. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell,2018,9(5): 488–500. doi:
    [4] GRAVES D T, CORRÊA J D, SILVA T A. The oral microbiota is modified by systemic diseases. J Dent Res,2019,98(2): 148–156. doi:
    [5] MATSHA T E, PRINCE Y, DAVIDS S, et al. Oral microbiome signatures in diabetes mellitus and periodontal disease. J Dent Res,2020,99(6): 658–665. doi:
    [6] SI J, LEE C, KO G. Oral microbiota: Microbial biomarkers of metabolic syndrome independent of host genetic factors. Front Cell Infect Microbiol, 2017, 7: 516[2021-10-22]. . doi: .
    [7] SU X, ZHAO Y, LI Y, et al. Gut dysbiosis is associated with primary hypothyroidism with interaction on gut-thyroid axis. Clin Sci (Lond),2020,134(12): 1521–1535. doi:
    [8] YAO Z, ZHAO M, GONG Y, et al. Relation of gut microbes and L-thyroxine through altered thyroxine metabolism in subclinical hypothyroidism subjects. Front Cell Infect Microbiol, 2020, 10: 495[2021-11-10]. . doi: .
    [9] DONG T, ZHAO F, YUAN K, et al. Association between serum thyroid-stimulating hormone levels and salivary microbiome shifts. Front Cell Infect Microbiol, 2021, 11: 603291[2021-12-17]. . doi: .
    [10] MATTHEWS D R, HOSKER J P, RUDENSKI A S, et al. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia,1985,28(7): 412–419. doi:
    [11] Integrative HMP (iHMP) Research Network Consortium. The integrative human microbiome project. Nature,2019,569(7758): 641–648. doi:
    [12] RAGUSA M, SANTAGATI M, MIRABELLA F, et al. Potential associations among alteration of salivary miRNAs, saliva microbiome structure, and cognitive impairments in autistic children. Int J Mol Sci,2020,21(17): 6203. doi:
    [13] FARRELL J J, ZHANG L, ZHOU H, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut,2012,61(4): 582–588. doi:
    [14] ZHAO F, DONG T, YUAN K Y, et al. Shifts in the bacterial community of supragingival plaque associated with metabolic-associated fatty liver disease. Front Cell Infect Microbiol, 2020, 10: 581888[2021-12-17]. . doi: .
    [15] BHUSHAN B, YADAV A P, SINGH S B, et al. Diversity and functional analysis of salivary microflora of Indian Antarctic expeditionaries. J Oral Microbiol, 2019, 11(1): 1581513[2021-12-17]. . doi: .
    [16] FAUST K, RAES J. Microbial interactions: From networks to models. Nat Rev Microbiol,2012,10(8): 538–550. doi:
    [17] RATZKE C, BARRERE J, GORE J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat Ecol Evol,2020,4(3): 376–383. doi:
    [18] KOLENBRANDER P E, PALMER R J, Jr, PERIASAMY S, et al. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol,2010,8(7): 471–480. doi:
    [19] GHOLIZADEH P, ESLAMI H, YOUSEFI M, et al. Role of oral microbiome on oral cancers, a review. Biomed Pharmacother,2016,84: 552–558. doi:
    [20] HONG B Y, SOBUE T, CHOQUETTE L, et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome,2019,7(1): 66. doi:
    [21] KRUSE A B, KUERSCHNER A C, KUNZE M, et al. Association between high risk for preterm birth and changes in gingiva parameters during pregnancy—A prospective cohort study. Clin Oral Investig,2018,22(3): 1263–1271. doi:
    [22] BRENNAN C A, GARRETT W S. Fusobacterium nucleatum—Symbiont, opportunist and oncobacterium. Nat Rev Microbiol,2019,17(3): 156–166. doi:
    [23] KOSTIC A D, GEVERS D, PEDAMALLU C S, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res,2012,22(2): 292–298. doi:
    [24] JUN J E, JEE J H, BAE J C, et al. Association between changes in thyroid hormones and incident type 2 diabetes: A seven-year longitudinal study. Thyroid,2017,27(1): 29–38. doi:
    [25] B U U, MN S, KM S, et al. Effect of insulin resistance in assessing the clinical outcome of clinical and subclinical hypothyroid patients. J Clin Diagn Res, 2015, 9(2): OC01-4[2021-12-17]. . doi: .
    [26] GURUNG M, LI Z, YOU H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 2020, 51: 102590[2021-12-17]. . doi: .
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  131
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2023-02-04
  • 刊出日期:  2023-03-22

目录

    /

    返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!