口腔菌群与阿尔茨海默症的关系
doi:
基金项目: 国家自然科学基金(No. 81991501)、口腔疾病研究国家重点实验室开放课题基金(No. SKLOD2021OF03)和北京大学医学部与英国伦敦国王大学联合基金(No. BMU2020KCL003)资助
-
摘要: 阿尔茨海默症(Alzheimer’s disease, AD)是一种常见的神经退行性疾病。在老龄化社会中,AD的高患病率和低生活质量给个人、家庭和社会带来严重困扰,但AD的病因和致病机制并未完全明确,年龄、遗传、环境等因素都与之有关,治疗也没有令人满意的效果。最近有研究表示,口腔菌群失调与AD发病有密切关系,口腔细菌感染可能是引发AD的病因之一。口腔是人体最大的微生物生态系统,其稳态对健康至关重要。口腔菌群紊乱导致的细菌感染会通过直接和间接作用造成大脑内β-淀粉样蛋白(amyloid β-protein, Aβ)代谢失衡,Tau蛋白过磷酸化,沉积形成老年斑和神经原纤维缠结(neurofibrillary tangles, NFTs)损伤神经元。本文根据最新的研究进展,讨论口腔菌群与AD发生的相关性和机制,以及主要口腔细菌的致病机制,探索口腔菌群靶向疗法的潜在应用前景。
-
关键词:
- koko体育app: 阿尔茨海默症 /
- 口腔菌群 /
- 神经炎症 /
- 牙龈卟啉单胞菌
Abstract: Alzheimer’s disease (AD) is a common neurodegenerative disease. In an aging society, the high prevalence of AD and the low quality of life of AD patients create serious problems for individuals, families and the society. However, the etiology and pathogenesis of AD are still not fully understood. Age, genetics, environment and other factors are all relevant to AD, and treatment has not achieved satisfactory results. Recent studies have found that oral dysbiosis is closely related to the pathogenesis of AD, and that oral bacterial infection may be one of the causes of AD. Oral cavity is the largest microbial ecosystem of human body, and its homeostasis is critical to health. Bacterial infections caused by oral dysbiosis can directly and indirectly induce the metabolic imbalance of amyloid β-protein (Aβ) in the brain and the hyperphosphorylation of Tau protein. Then, the precipitation forms senile plaques and neurofibrillary tangles (NFTs) that damage neurons. Based on the latest research findings, we herein discussed the correlation between oral microbiota and the pathogenesis of AD and the mechanisms involved, as well as the pathogenic mechanism of main oral bacteria. In addition, we explored the potential application prospects of oral microbiota-targeted therapy. -
koko体育app
图 1 口腔菌群对脑组织的直接损伤作用
Figure 1. Dire🃏ct damage o💧f oral microflora to brain tissue
A: Some bacteria can directly produce Aβ precipitation accumulation in brain tissue; B: Microglia are continuously activated by bacteria and toxins entering brain tissue, releasing inflammatory factors and causing neuroinflammation; C: Bacteria and toxins activate the complement system; D: Inflammatory factors and complement fragments promote Aβ precipitation and Tau protein hyperphosphorylation; E: Aβ precipitation and hyperphosphorylation of Tau protein stimulate microglia to produce inflammatory factors that maintain or exacerbate neuroinflammation; F: Excessive Aβ precipitation and hyperphosphorylated Tau protein damage neurons and induce AD. OMV: Outer membrane vesicle; LPS: Lipopolysaccharide; TNF: Tumor necrosis factor; Aβ: Amyloid β-protein; IL-1: Interleukin-1; IL-6: Interleukin-6; IL-12: Interleukin-12; IL-23: Interleukin-23.图 2 细菌、毒素和炎症因子通过BBB途径
Figure 2. Bacteria, toxins and inflaꦬmmatory factors pass through the BBB pathway
A: Destruction of BBB barrier cells; B: Activating barrier cells to secret nitric oxide (NO), prostaglandin (PG) and other signaling molecules, and promoting brain cells to produce inflammatory factors, such as LPS-stimulated IL-6; C: Cell-specific transporters transporting inflammatory factors, such as TNF transporters. OMV: Outer membrane vesicle; LPS: Lipopolysaccharide; TNF: Tumor necrosis factor; IL-1: Interleukin-1; IL-6: Interleukin-6; BBB: Blood-brain barrier. -
[1] 任汝静, 殷鹏, 王志会, 等. 中国阿尔茨海默病报告2021. 诊断学理论与实践, 2021, 20(4): 317-337[2023-02-15]. . doi: . [2] SILVA M V F, LOURES C M G, ALVES L C V, et al. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci,2019,26(1): 33. doi: [3] WADE W G. The oral microbiome in health and disease. Pharmacol Res,2013,69(1): 137–143. doi: [4] GAO L, XU T, HUANG G, et al. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell,2018,9(5): 488–500. doi: [5] WANG X, SUN G, FENG T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res,2019,29(10): 787–803. doi: [6] LIU X X, JIAO B, LIAO X X, et al. Analysis of salivary microbiome in patients with Alzheimer’s disease. J Alzheimers Dis,2019,72(2): 633–640. doi: [7] TAKEUCHI K, OHARA T, FURUTA M, et al. Tooth loss and risk of Dementia in the community: The hisayama study. J Am Geriatr Soc, 2017, 65(5): e95-e100[2022-09-23]. . [8] 聂然, 周延民. 慢性牙周炎与阿尔茨海默病相关性的研究进展. 口腔医学研究,2019,35(5): 419–422. doi: [9] 尹晶菊. 中重度牙周炎伴阿尔茨海默病患者龈下菌斑微生物群落分析. 遵义: 遵义医科大学, 2019. [10] EMERY D C, SHOEMARK D K, BATSTONE T E, et al. 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front Aging Neurosci, 2017, 9: 195[2022-09-22]. . [11] RIVIERE G R, RIVIERE K H, SMITH K S, et al. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol Immunol,2002,17(2): 113–118. doi: [12] DOULBERIS M, KOTRONIS G, THOMANN R, et al. Review: Impact of Helicobacter pylori on Alzheimer’s disease: What do we know so far? Helicobacter, 2018, 23(1): 10.1111/hel. 12454[2022-09-24]. . [13] POOLE S, SINGHRAO S K, KESAVALU L, et al. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J Alzheimers Dis,2013,36(4): 665–677. doi: [14] POOLE S, SINGHRAO S K, CHUKKAPALLI S, et al. Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains. J Alzheimers Dis,2015,43(1): 67–80. doi: [15] BOWMAN G L, DAYON L, KIRKLAND R, et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement,2018,14(12): 1640–1650. doi: [16] GIL-MONTOYA J A, BARRIOS R, SANTANA S, et al. Association between periodontitis and amyloid β peptide in elderly people with and without cognitive impairment. J Periodontol,2017,88(10): 1051–1058. doi: [17] HARDING A, GONDER U, ROBINSON S J, et al. Exploring the association between Alzheimer’s disease, oral health, microbial endocrinology and nutrition. Front Aging Neurosci, 2017, 9: 398[2022-09-24]. . [18] BANKS W A, FARR S A, MORLEY J E. Entry of blood-borne cytokines into the central nervous system: Effects on cognitive processes. Neuroimmunomodulation,2002,10(6): 319–327. doi: [19] SUNDAR S, BATTISTONI C, MCNULTY R, et al. An agent-based model to investigate microbial initiation of Alzheimer’s via the olfactory system. Theor Biol Med Model,2020,17(1): 5. doi: [20] SUREDA A, DAGLIA M, ARGÜELLES CASTILLA S, et al. Oral microbiota and Alzheimer’s disease: Do all roads lead to Rome? Pharmacol Res, 2020, 151: 104582[2022-09-25]. . [21] TANAKA M, TOLDI J, VÉCSEI L. Exploring the etiological links behind neurodegenerative diseases: Inflammatory cytokines and bioactive kynurenines. Int J Mol Sci,2020,21(7): 2431. doi: [22] 张明爽, 巴特, 王文标. 口腔微生物种群与阿尔茨海默病相关发病机制的研究进展. 国际口腔医学杂志,2020,47(01): 102–108. [23] ZHANG J, YU C, ZHANG X, et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation,2018,15(1): 37. doi: [24] SMITH D R, PRICE J E, BURBY P E, et al. The production of curli amyloid fibers is deeply integrated into the biology of Escherichia coli. Biomolecules,2017,7(4): 75. doi: [25] LUKIW W J. Gastrointestinal (GI) tract microbiome-derived neurotoxins-potent neuro-inflammatory signals from the GI tract via the systemic circulation into the brain. Front Cell Infect Microbiol, 2020, 10: 22[2022-10-15]. . [26] DIOGUARDI M, CRINCOLI V, LAINO L, et al. The role of periodontitis and periodontal bacteria in the onset and progression of Alzheimer’s disease: A systematic review. J Clin Med,2020,9(2): 495. doi: [27] MONTAGNE A, ZHAO Z, ZLOKOVIC B V. Alzheimer’s disease: A matter of blood-brain barrier dysfunction? J Exp Med,2017,214(11): 3151–3169. doi: [28] UMEDA T, ONO K, SAKAI A, et al. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain,2016,139(Pt 5): 1568–1586. doi: [29] WANG Y, GUAN PP, YU X, et al. COX-2 metabolic products, the prostaglandin I2 and F2α, mediate the effects of TNF-α and Zn2+ in stimulating the phosphorylation of Tau. Oncotarget,2017,8(59): 99296–99311. doi: [30] POLIAKOVA T, LEVIN O, ARABLINSKIY A, et al. Cerebral microbleeds in early Alzheimer’s disease. J Neurol,2016,263(10): 1961–1968. doi: [31] IADECOLA C. Revisiting atherosclerosis and dementia. Nat Neurosci,2020,23(6): 691–692. doi: [32] HUSSAIN A A, LEE Y, MARSHALL J. Understanding the complexity of the matrix metalloproteinase system and its relevance to age-related diseases: Age-related macular degeneration and Alzheimer’s disease. Prog Retin Eye Res, 2020, 74: 100775[2022-10-15]. . [33] 李晶卉, 张巍. 口腔微生物种群与阿尔茨海默病关系的新进展. 阿尔茨海默病及相关病杂志,2020,3(3): 204–209. [34] OLSEN I, SINGHRAO S K. Interaction between genetic factors, Porphyromonas gingivalis and microglia to promote Alzheimer’s disease. J Oral Microbiol,2020,12(1): 1820834. doi: [35] GIRI M, ZHANG M, LÜ Y. Genes associated with Alzheimer’s disease: An overview and current status. Clin Interv Aging,2016,11: 665–681. doi: [36] CARTER C J, FRANCE J, CREAN S, et al. The Porphyromonas gingivalis/host interactome shows enrichment in GWASdb genes related to Alzheimer’s disease, diabetes and cardiovascular diseases. Front Aging Neurosci, 2017, 9: 408[2022-10-20]. . [37] IDE M, HARRIS M, STEVENS A, et al. Periodontitis and cognitive decline in Alzheimer’s Disease. PLoS One, 2016, 11(3): e0151081[2023-02-15]. . [38] NOBLE J M, BORRELL L N, PAPAPANOU P N, et al. Periodontitis is associated with cognitive impairment among older adults: Analysis of NHANES-Ⅲ. J Neurol Neurosurg Psychiatry,2009,80(11): 1206–1211. doi: [39] ISHIDA N, ISHIHARA Y, ISHIDA K, et al. Periodontitis induced by bacterial infection exacerbates features of Alzheimer’s disease in transgenic mice. NPJ Aging Mech Dis, 2017, 3: 15[2023-02-17]. . [40] KAMER A R, CRAIG R G, PIRRAGLIA E, et al. TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J Neuroimmunol,2009,216(1/2): 92–97. doi: [41] CARTER C J. Genetic, transcriptome, proteomic, and epidemiological evidence for blood-brain barrier disruption and polymicrobial brain invasion as determinant factors in Alzheimer’s disease. J Alzheimers Dis Rep,2017,1(1): 125–157. doi: [42] WU Z, NI J, LIU Y, et al. Cathepsin B plays a critical role in inducing Alzheimer’s disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav Immun, 2017, 65: 350−361[2023-02-18]. . [43] CHITRANSHI N, KUMAR A, SHERIFF S, et al. Identification of novel cathepsin B inhibitors with implications in Alzheimer’s disease: Computational refining and biochemical evaluation. Cells,2021,10(8): 1946. doi: [44] OLSEN I, LAMBRIS J D, HAJISHENGALLIS G. Porphyromonas gingivalis disturbs host-commensal homeostasis by changing complement function. J Oral Microbiol, 2017, 9(1): 1340085[2022-10-25]. . [45] DOMINY S S, LYNCH C, ERMINI F, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv, 2019, 5(1): eaau3333[2022-10-25]. . [46] MONTAGNE A, PA J, ZLOKOVIC B V. Vascular plasticity and cognition during normal aging and dementia. JAMA Neurol,2015,72(5): 495–496. doi: [47] 尹晶菊, 葛颂. 口腔微生物与阿尔茨海默病相关性研究进展. 山东医药,2019,59(2): 107–110. doi: [48] SAKAI K, FUKUDA T, IWADATE K, et al. A fatal fall associated with undiagnosed parenchymatous neurosyphilis. Am J Forensic Med Pathol,2014,35(1): 4–7. doi: [49] MIKLOSSY J. Historic evidence to support a causal relationship between spirochetal infections and Alzheimer’s disease. Front Aging Neurosci, 2015, 7: 46[2022-10-25]. . [50] WANG X L, ZENG J, FENG J, et al. Helicobacter pylori filtrate impairs spatial learning and memory in rats and increases β-amyloid by enhancing expression of presenilin-2. Front Aging Neurosci, 2014, 6: 66[2022-10-25]. . -