koko体育app

欢迎来到《koko体育app 学报(医学版)》
齿科微海洋生物及寄主癌细胞有机酸基础代谢与齿科病毒有关系性钻研重大突破

koko体育app: 张树伟 李玉超 koko体育app: 潘亚萍

张树伟, 李玉超, 潘亚萍. 口腔微生物及宿主细胞氨基酸代谢与口腔疾病相关性研究进展[J]. koko体育app 学报(医学版), 2022, 53(2): 181-187. doi: 10.12182/20220360302
引用本文: 张树伟, 李玉超, 潘亚萍. 口腔微生物及宿主细胞氨基酸代谢与口腔疾病相关性研究进展[J]. koko体育app 学报(医学版), 2022, 53(2): 181-187. doi:
ZHANG Shu-wei, LI Yu-chao, PAN Ya-ping. Research Progress in the Association between Amino Acid Metabolism of Oral Microorganisms and Host Cells and Oral Diseases[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 181-187. doi: 10.12182/20220360302
Citation: ZHANG Shu-wei, LI Yu-chao, PAN Ya-ping. Research Progress in the Association between Amino Acid Metabolism of Oral Microorganisms and Host Cells and Oral Diseases[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 181-187. doi:

口腔微生物及宿主细胞氨基酸代谢与口腔疾病相关性研究进展

doi: 
基金项目: 国家自然科学基金面上项目(No. 82170969、No.81870771)资助
详细信息
    通讯作者:

    E-mail:koko体育app:yppan@cmu.edu.cn

Research Progress in the Association between Amino Acid Metabolism of Oral Microorganisms and Host Cells and Oral Diseases

More Information
  • 摘要: 氨基酸作为蛋白质的合成底物,是细胞内仅次于葡萄糖的重要能量和营养来源。微生物和宿主细胞均能进行氨基酸代谢,其代谢产物广泛参与炎症、免疫反应等生物学过程。探究疾病发生发展过程中微生物与宿主氨基酸代谢变化成为新的研究热点。本文将对色氨酸、精氨酸等氨基酸代谢途径及其产物与龋病、牙周病、舍格伦综合征,甚至口腔肿瘤等常见口腔疾病发生发展相关研究进展做一综述,以期为深入理解口腔疾病致病机制和指导临床治疗提供理论依据。
  • [1] ZHANG Y, WANG X, LI H, et al. Human oral microbiota and its modulation for oral health. Biomed Pharmacother,2018,99: 883–893. doi:
    [2] DHANKHAR R, GUPTA V, KUMAR S, et al. Microbial enzymes for deprivation of amino acid metabolism in malignant cells: Biological strategy for cancer treatment. Appl Microbiol Biotechnol,2020,104(7): 2857–2869. doi:
    [3] COSTANTINI C, BELLET M M, RENGA G, et al. Tryptophan co-metabolism at the host-pathogen interface. Front Immunol, 2020, 11: 67[2022-11-19]. .
    [4] BARIK S. The uniqueness of tryptophan in biology: Properties, metabolism, interactions and localization in proteins. Int J Mol Sci,2020,21(22): 8776. doi:
    [5] PALEGO L, BETTI L, ROSSI A, et al. Tryptophan biochemistry: structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids, 2016, 2016: 8952520[2022-11-19]. . doi: .
    [6] DONG F, PERDEW G H. The aryl hydrocarbon receptor as a mediator of host-microbiota interplay. Gut Microbes, 2020, 12(1): 1859812[2022-11-19]. . doi: .
    [7] TAKAHASHI N. Oral microbiome metabolism: from "who are they"? to "what are they doing"? J Dent Res,2015,94(12): 1628–1637. doi:
    [8] GRIFKA-WALK H M, JENKINS B R, KOMINSKY D J. Amino acid trp: The far out impacts of host and commensal tryptophan metabolism. Front Immunol, 2021, 12: 653208[2022-11-19]. . doi: .
    [9] WU H, DENNA T H, STORKERSEN J N, et al. Beyond a neurotransmitter: the role of serotonin in inflammation and immunity. Pharmacol Res,2019,140: 100–114. doi:
    [10] SHAJIB M S, KHAN W I. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxf),2015,213(3): 561–574. doi:
    [11] BADAWY A A. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int J Tryptophan Res, 2017, 10: 1178646917691938[2022-11-19]. . doi: .
    [12] LIU X H, ZHAI X Y. Role of tryptophan metabolism in cancers and therapeutic implications. Biochimie,2021,182: 131–139. doi:
    [13] YUASA H J, BALL H J. Efficient tryptophan-catabolizing activity is consistently conserved through evolution of TDO enzymes, but not IDO enzymes. J Exp Zool B Mol Dev Evol,2015,324(2): 128–140. doi:
    [14] PFEFFERKORN E R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A,1984,81(3): 908–912. doi:
    [15] CHOERA T, ZELANTE T, ROMANI L, et al. A multifaceted role of tryptophan metabolism and indoleamine 2,3-dioxygenase activity in aspergillus fumigatus-host interactions. Front Immunol, 2017, 8: 1996[2022-11-19]. . doi: .
    [16] NEAVIN D R, LIU D, RAY B, et al. The role of the aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases. Int J Mol Sci,2018,19(12): 3851. doi:
    [17] DURAN-PINEDO A E, FRIAS-LOPEZ J. Beyond microbial community composition: Functional activities of the oral microbiome in health and disease. Microbes Infect,2015,17(7): 505–516. doi:
    [18] BALCI N, KURGAN S, CEKICI A, et al. Free amino acid composition of saliva in patients with healthy periodontium and periodontitis. Clin Oral Investig,2021,25(6): 4175–4183. doi:
    [19] WANG W, WANG X, LU S, et al. Metabolic disturbance and Th17/Treg ombalance are associated with progression of gingivitis. Front Immunol, 2021, 12: 670178[2022-11-19]. . doi: .
    [20] MOON J S, CHEONG N R, YANG S Y, et al. Lipopolysaccharide-induced indoleamine 2,3-dioxygenase expression in the periodontal ligament. J Periodontal Res,2013,48(6): 733–739. doi:
    [21] QIN X, LIU J Y, WANG T, et al. Role of indoleamine 2,3-dioxygenase in an inflammatory model of murine gingiva. J Periodontal Res,2017,52(1): 107–113. doi:
    [22] NISAPAKULTORN K, MAKRUDTHONG J, SA-ARD-IAM N, et al. Indoleamine 2,3-dioxygenase expression and regulation in chronic periodontitis. J Periodontol,2009,80(1): 114–121. doi:
    [23] CHABBI-ACHENGLI Y, COUDERT A E, CALLEBERT J, et al. Decreased osteoclastogenesis in serotonin-deficient mice. Proc Natl Acad Sci U S A,2012,109(7): 2567–2572. doi:
    [24] LI X, MA Y, WU X, et al. Serotonin acts as a novel regulator of interleukin-6 secretion in osteocytes through the activation of the 5-HT(2B) receptor and the ERK1/2 signalling pathway. Biochem Biophys Res Commun,2013,441(4): 809–814. doi:
    [25] LI X, WU X, MA Y, et al. Oral administration of 5-hydroxytryptophan aggravated periodontitis-induced alveolar bone loss in rats. Arch Oral Biol,2015,60(5): 789–798. doi:
    [26] SRIVASTAVA A, MAKARENKOVA H P. Innate immunity and biological therapies for the treatment of Sjogren’s Syndrome. Int J Mol Sci,2020,21(23): 9172. doi:
    [27] 俞创奇. 舍格伦综合征的病因和治疗进展. 中国口腔颌面外科杂志,2014,12(5): 385–389.
    [28] KAGEYAMA G, SAEGUSA J, IRINO Y, et al. Metabolomics analysis of saliva from patients with primary Sjogren’s syndrome. Clin Exp Immunol,2015,182(2): 149–153. doi:
    [29] HERRALA M, MIKKONEN J J W, PESONEN P, et al. Variability of salivary metabolite levels in patients with Sjogren’s syndrome. J Oral Sci,2020,63(1): 22–26. doi:
    [30] FERNANDEZ-OCHOA A, BORRAS-LINARES I, QUIRANTES-PINE R, et al. Discovering new metabolite alterations in primary Sjogren’s syndrome in urinary and plasma samples using an HPLC-ESI-QTOF-MS methodology. J Pharm Biomed Anal, 2020, 179: 112999[2022-11-19]. .
    [31] DE OLIVEIRA F R, FANTUCCI M Z, ADRIANO L, et al. Neurological and inflammatory manifestations in Sjogren’s Syndrome: the role of the kynurenine metabolic pathway. Int J Mol Sci,2018,19(12): 3953. doi:
    [32] MARIA N I, VAN HELDEN-MEEUWSEN C G, BRKIC Z, et al. Association of increased Treg cell levels with elevated indoleamine 2,3-dioxygenase activity and an imbalanced kynurenine pathway in interferon-positive primary Sjogren’s syndrome. Arthritis Rheumatol,2016,68(7): 1688–1699. doi:
    [33] RUBEL F, KERN J S, TECHNAU-HAFSI K, et al. Indoleamine 2,3-dioxygenase expression in primary cutaneous melanoma correlates with breslow thickness and is of significant prognostic value for progression-free survival. J Invest Dermatol,2018,138(3): 679–687. doi:
    [34] BRANDACHER G, PERATHONER A, LADURNER R, et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: Effect on tumor-infiltrating T cells. Clin Cancer Res,2006,12(4): 1144–1151. doi:
    [35] SUZUKI Y, SUDA T, FURUHASHI K, et al. Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer. Lung Cancer,2010,67(3): 361–365. doi:
    [36] PLATTEN M, WICK W, VAN DEN EYNDE B J. Tryptophan catabolism in cancer: Beyond IDO and tryptophan depletion. Cancer Res,2012,72(21): 5435–5440. doi:
    [37] LAIMER K, TROESTER B, KLOSS F, et al. Expression and prognostic impact of indoleamine 2,3-dioxygenase in oral squamous cell carcinomas. Oral Oncol,2011,47(5): 352–357. doi:
    [38] ZHENG Q, GAN G, GAO X, et al. Targeting the IDO-BCL2A1-Cytochrome C pathway promotes apoptosis in oral squamous cell carcinoma. Onco Targets Ther,2021,14: 1673–1687. doi:
    [39] TAPIERO H, MATHE G, COUVREUR P, et al. I. Arginine. Biomed Pharmacother,2002,56(9): 439–445. doi:
    [40] CHEN C L, HSU S C, ANN D K, et al. Arginine signaling and cancer metabolism. Cancers (Basel),2021,13(14): 3541. doi:
    [41] 郭强, 徐欣, 周学东. 口腔细菌代谢产碱及其分子生物学研究进展. 国际口腔医学杂志,2013,40(1): 80–85.
    [42] NASCIMENTO M M, ALVAREZ A J, HUANG X, et al. Metabolic profile of supragingival plaque exposed to arginine and fluoride. J Dent Res,2019,98(11): 1245–1252. doi:
    [43] BIJLE M N A, YIU C K Y, EKAMBARAM M. Can oral ADS activity or arginine levels be a caries risk indicator? A systematic review and meta-analysis. Clin Oral Investig,2018,22(2): 583–596. doi:
    [44] HUANG X, SCHULTE R M, BURNE R A, et al. Characterization of the arginolytic microflora provides insights into pH homeostasis in human oral biofilms. Caries Res,2015,49(2): 165–176. doi:
    [45] CHAKRABORTY B, BURNE R A. Effects of arginine on streptococcus mutans growth, virulence gene expression, and stress tolerance. Appl Environ Microbiol, 2017, 83(15): e00496-17[2022-11-19]. doi: .
    [46] JAKUBOVICS N S, ROBINSON J C, SAMARIAN D S, et al. Critical roles of arginine in growth and biofilm development by Streptococcus gordonii. Mol Microbiol,2015,97(2): 281–300. doi:
    [47] AGNELLO M, CEN L, TRAN N C, et al. Arginine improves pH homeostasis via metabolism and microbiome modulation. J Dent Res,2017,96(8): 924–930. doi:
    [48] 周双双, 郑欣, 周学东, 等. 菌斑生物膜产碱代谢与龋病. 国际口腔医学杂志,2016,43(5): 573–577.
    [49] ASTVALDSDOTTIR A, NAIMI-AKBAR A, DAVIDSON T, et al. Arginine and caries prevention: A systematic review. Caries Res,2016,50(4): 383–393. doi:
    [50] MORRIS S M, Jr. Arginine metabolism revisited. J Nutr,2016,146(12): 2579S–2586S. doi:
    [51] MURAD F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci Rep,2004,24(4/5): 452–474. doi:
    [52] OZMERIC N, ELGUN S, URAZ A. Salivary arginase in patients with adult periodontitis. Clin Oral Investig,2000,4(1): 21–24. doi:
    [53] GHEREN L W, CORTELLI J R, RODRIGUES E, et al. Periodontal therapy reduces arginase activity in saliva of patients with chronic periodontitis. Clin Oral Investig,2008,12(1): 67–72. doi:
    [54] OZER L, ELGUN S, OZDEMIR B, et al. Arginine-nitric oxide-polyamine metabolism in periodontal disease. J Periodontol,2011,82(2): 320–328. doi:
    [55] 孙继军, 王爱芹, 高艳. 精氨酸酶在大鼠实验性牙周炎牙周组织中的表达变化. 牙体牙髓牙周病学杂志,2012,22(8): 445–448.
    [56] 李慧, 李明贺, 汪洋, 等. L-精氨酸对实验性牙移动大鼠牙周组织CD133表达的影响. 中国实验诊断学,2019,23(3): 531–534. doi:
    [57] MORADALI M F, GHODS S, ANGELINI T E, et al. Amino acids as wetting agents: Surface translocation by Porphyromonas gingivalis. ISME J,2019,13(6): 1560–1574. doi:
    [58] ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease. Nat Commun,2018,9(1): 3294. doi:
    [59] WEISCHENDORFF S, KIELSEN K, NEDERBY M, et al. Reduced plasma amino acid levels during allogeneic hematopoietic stem cell transplantation are associated with systemic inflammation and treatment-related complications. Biol Blood Marrow Transplant,2019,25(7): 1432–1440. doi:
    [60] LI Z, ZHANG H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci,2016,73(2): 377–392. doi:
    [61] HAMPELSKA K, JAWORSKA MM, BABALSKA ZL, et al. The role of oral microbiota in intra-oral halitosis. J Clin Med, 2020, 9(8): 2484[2022-11-19]. . doi: .
    [62] SUZUKI N, YONEDA M, TAKESHITA T, et al. Induction and inhibition of oral malodor. Mol Oral Microbiol,2019,34(3): 85–96. doi:
    [63] FOO L H, BALAN P, PANG L M, et al. Role of the oral microbiome, metabolic pathways, and novel diagnostic tools in intra-oral halitosis: A comprehensive update. Crit Rev Microbiol,2021,47(3): 359–375. doi:
    [64] NOHNO K, YAMAGA T, KANEKO N, et al. Tablets containing a cysteine protease, actinidine, reduce oral malodor: a crossover study. J Breath Res, 2012, 6(1): 017107[2022-11-19]. . doi: .
    [65] YANG M, VOUSDEN K H. Serine and one-carbon metabolism in cancer. Nat Rev Cancer,2016,16(10): 650–662. doi:
    [66] MONTROSE D C, SAHA S, FORONDA M, et al. Exogenous and endogenous sources of serine contribute to colon cancer metabolism, growth, and resistance to 5-fluorouracil. Cancer Res,2021,81(9): 2275–2288. doi:
    [67] SIM W C, YIN H Q, CHOI H S, et al. L-serine supplementation attenuates alcoholic fatty liver by enhancing homocysteine metabolism in mice and rats. J Nutr,2015,145(2): 260–267. doi:
    [68] ZHOU X, HE L, WU C, et al. Serine alleviates oxidative stress via supporting glutathione synthesis and methionine cycle in mice. Mol Nutr Food Res, 2017, 61(11)[2022-11-19]. .
    [69] ZHANG H, HUA R, ZHANG B, et al. Serine alleviates dextran sulfate sodium-induced colitis and regulates the gut microbiota in mice. Front Microbiol, 2018, 9: 3062[2022-11-19]. .
    [70] WEI L, XU M, XIONG H. An update of knowledge on the regulatory role of Treg cells in apical periodontitis. Oral Dis,2021,27(6): 1356–1365. doi:
    [71] HUANG Y, ZHOU P, LIU S, et al. Metabolome and microbiome of chronic periapical periodontitis in permanent anterior teeth: a pilot study. BMC Oral Health, 2021, 21(1): 599[2022-11-19]. . doi: .
    [72] MA E H, BANTUG G, GRISS T, et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab,2017,25(2): 345–357. doi:
  • 加载中
计量
  • 文章访问数:  235
  • HTML全文浏览量:  133
  • PDF下载量:  349
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-19
  • 录用日期:  2023-02-16
  • 修回日期:  2023-02-14
  • 刊出日期:  2023-03-22

目录

    /

    返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!