koko体育app

欢迎来到《koko体育app 学报(医学版)》
牙齿部位扁形苔藓朋友津液微生物组和白色念珠菌组形式解密

晏彩霞 koko体育app: 王琨 张波 koko体育app: 肖丽英 koko体育app: 厉舒桢 邓晔 koko体育app: 李燕

晏彩霞, 王琨, 张波, 等. 口腔扁平苔藓患者唾液细菌组和真菌组结构解析[J]. koko体育app 学报(医学版), 2022, 53(2): 274-280. doi: 10.12182/20220360204
引用本文: 晏彩霞, 王琨, 张波, 等. 口腔扁平苔藓患者唾液细菌组和真菌组结构解析[J]. koko体育app 学报(医学版), 2022, 53(2): 274-280. doi:
YAN Cai-xia, WANG Kun, ZHANG Bo, et al. Structural Analysis of Salivary Bacterial and Fungal Microbiome in Oral Lichen Planus Patients[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 274-280. doi: 10.12182/20220360204
Citation: YAN Cai-xia, WANG Kun, ZHANG Bo, et al. Structural Analysis of Salivary Bacterial and Fungal Microbiome in Oral Lichen Planus Patients[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 274-280. doi:

口腔扁平苔藓患者唾液细菌组和真菌组结构解析

doi: 
基金项目: 国家自然科学基金项目(No. 81771085)、四川省科技厅重点研发项目(No. 2020YFSY0008)和广东省科技厅重点实验室开放课题基金(No. KF2019120101)资助
详细信息
    通讯作者:

    E-mail:feifeiliyan@163.com

Structural Analysis of Salivary Bacterial and Fungal Microbiome in Oral Lichen Planus Patients

More Information
  • 摘要:   目的  探索口腔扁平苔藓(oral lichen planus, OLP)患者口腔细菌组、真菌组与健康对照(healthy, H)之间的差异,细菌组-真菌组的共现模式以及OLP患者口腔细菌组与宿主免疫之间的联系。  方法  收取临床OLP患者(n=35)和健康志愿者(n=18)的唾液,提取微生物组DNA进行细菌16S rRNA测序和真菌内转录间隔区2(internal transcribed spacer 2, ITS2)测序,生物信息学分析数据。检测唾液中炎症因子白细胞介素(interleukin, IL)-17和IL-23的质量浓度,并分析其与细菌的相关性。  结果  OLP患者唾液细菌组和真菌组与H组整体群落结构差异不明显。唾液细菌组中普雷沃菌属(Prevotella)和Solobacterium在OLP组有显著增高的丰度(P<0.05),唾液真菌组中念珠菌属(Candida)和曲霉菌属(Aspergillus)的相对丰度显著增加(P<0.05)。唾液细菌-真菌组的共现模式表明,虽然上述差异菌属之间无相关,但曲霉菌属与细菌属的相互关系在H组和OLP组中发生了转变,即OLP组的共现关系减少。唾液IL-17水平在OLP组中明显升高,IL-17及临床评分均与卟啉单胞菌属(Porphyromonas)丰度显著相关。  结论  口腔普雷沃菌属、Solobacterium、念珠菌属和曲霉菌属丰度增加与OLP发病相关,群落共现关系的改变和宿主免疫的变化可能参与OLP致病机制。
  • koko体育app

    图  1  口腔扁平苔藓患者唾液微生物α多样性分析

    Figure  1.  The α diversity of salivary microbiome in OLP p♕atients

    A-C: Salivary bacteriome; D-F: Salivary mycobiome. H group (n=18), OLP group (n=35).

    图  2  OLP患者唾液微生物属的相对丰度差异(Top 20)

    Figure  2.  ♎ Difference in the relative abundan꧙ce of salivary microbiome at the genus level in OLP patients(Top 20)

    A: Salivary bacteriome; B: Salivary mycobiome. *P<0.1, **P<0.05.

    图  3  唾液样本中真菌组和细菌组的共现关系

    Figure  3.  The co-occurrence patterns of the saliv⛄ary mycobiome–bacteriome. Mycobiome was shown at the top, and bacteriome on the left; red squares showed positive relationship, while blue squares showed negative relation

    *P<0.05, **P<0.01, ***P<0.001.

    表  1  口腔扁平苔藓患者临床参数分析

    Table  1.   A🤪nalysis of clinical parameters of OLP patients

    GroupnIL-17/(pg/mL)IL-23/(pg/mL)Clinical score
    H 18 39.85±4.86 119.53±146.01 0
    OLP 35 43.56±5.69 152.61±132.44 2.66±0.05
    P 0.048 0.421 0.000 1
    下载: 导出CSV

    表  2  口腔扁平苔藓患者临床参数与唾液菌属的相关性分析

    Table  2.   Correlation analysis between clinical parameters a⛄nd salivary bacteriome in OLP patients

    Clinical factorGenus or ILrP
    Clinical score IL-17 0.45 0.003 0
    Treponema 0.38 0.011 9
    Porphyromonas 0.37 0.014 7
    Abiotrophia 0.31 0.042 8
    IL-17 Treponema 0.52 0.000 3
    Porphyromonas 0.38 0.011 7
    IL-23 Porphyromonas 0.44 0.003 1
    Abiotrophia 0.35 0.023 4
    下载: 导出CSV
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] VILLA T G, SANCHEZ-PEREZ Á, SIEIRO C. Oral lichen planus: A microbiologist point of view. Int Microbiol,2021,24(3): 275–289. doi:
    [2] HIJAZI K, MORRISON R W, MUKHOPADHYA I, et al. Oral bacterial diversity is inversely correlated with mucosal inflammation. Oral Dis,2020,26(7): 1566–1575. doi:
    [3] LEE Y H, CHUNG S W, AUH Q S, et al. Progress in oral microbiome related to oral and systemic diseases: An update. Diagnostics (Basel), 2021, 11(7): 1283[2022-07-19]. .
    [4] BOMBECCARI G P, GIANNI A B, SPADARI F. Oral Candida colonization and oral lichen planus. Oral Dis,2017,23(7): 1009–1010. doi:
    [5] DE CARVALHO M F M S , CAVALIERI D, DO NASCIMENTO S, et al. Cytokines levels and salivary microbiome play a potential role in oral lichen planus diagnosis. Sci Rep, 2019, 9(1): 18137[2022-07-19]. .
    [6] LI Y, WANG K, ZHANG B, et al. Salivary mycobiome dysbiosis and its potential impact on bacteriome shifts and host immunity in oral lichen planus. Int J Oral Sci, 2019, 11(2): 13[2022-03-19]. .
    [7] WANG K, LU W, TU Q, et al. Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus. Sci Rep, 2016, 6: 22943[2022-03-19]. .
    [8] HE Z, XU M, DENG Y, et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett,2010,13(5): 564–575. doi:
    [9] YANG F, ZENG X, NING K, et al. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J,2012,6(1): 1–10. doi:
    [10] RÔÇAS I N, SIQUEIRA J F, Jr. Frequency and levels of candidate endodontic pathogens in acute apical abscesses as compared to asymptomatic apical periodontitis. PLoS One, 2018, 13(1): e0190469[2022-03-19]. .
    [11] LARSEN J M. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology,2017,151(4): 363–374. doi:
    [12] SAID H S, SUDA W, NAKAGOME S, et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res,2014,21(1): 15–25. doi:
    [13] ZHONG E F, CHANG A, STUCKY A, et al. Genomic analysis of oral lichen planus and related oral microbiome pathogens. Pathogens, 2020, 9(11): 952[2022-03-19]. .
    [14] ZHENG S W, XU P, CAI L T, et al. The presence of Prevotella melaninogenica within tissue and preliminary study on its role in the pathogenesis of oral lichen planus. Oral Dis, 2021[2022-07-19]. .
    [15] MASUO Y, SUZUKI N, YONEDA M, et al. Salivary β-galactosidase activity affects physiological oral malodour. Arch Oral Biol,2012,57(1): 87–93. doi:
    [16] WANG X, ZHAO Z, TANG N, et al. Microbial community analysis of saliva and biopsies in patients with oral lichen planus. Front Microbiol, 2020, 11: 629[2022-03-19]. .
    [17] HE H, XIA X, YANG H, et al. A pilot study: A possible implication of Candida as an etiologically endogenous pathogen for oral lichen planus. BMC Oral Health, 2020, 20(1): 72[2022-03-19]. .
    [18] LIU J, GENG F, SUN H, et al. Candida albicans induces TLR2/MyD88/NF-κB signaling and inflammation in oral lichen planus-derived keratinocytes. J Infect Dev Ctries,2018,12(9): 780–786. doi:
    [19] BURGEL P R, PAUGAM A, HUBERT D, et al. Aspergillus fumigatus in the cystic fibrosis lung: Pros and cons of azole therapy. Infect Drug Resist, 2016, 9: 229−238[2022-03-19]. .
    [20] HONG B Y, SOBUE T, CHOQUETTE L, et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome, 2019, 7(1): 66[2022-03-19]. .
    [21] ZHANG L, SUN T, ZHU P, et al. Quantitative analysis of salivary oral bacteria associated with severe early childhood caries and construction of caries assessment model. Sci Rep, 2020, 10(1): 6365[2022-03-19]. .
    [22] VEMURI R, SHERRILL C, DAVIS M A, et al. Age-related colonic mucosal microbiome community shifts in monkeys. J GerontolA Biol Sci Med Sci, 2020: glaa256[2022-03-19]. .
    [23] OEVER J T, NETEA M G. The bacteriome-mycobiome interaction and antifungal host defense. Eur J Immunol,2014,44(11): 3182–3191. doi:
    [24] XIE S, DING L, XIONG Z, et al. Implications of Th1 and Th17 cells in pathogenesis of oral lichen planus. J Huazhong Univ Sci Technolog Med Sci,2012,32(3): 451–457. doi:
    [25] WANG H, ZHANG D, HAN Q, et al. Role of distinct CD4+ T helper subset in pathogenesis of oral lichen planus. J Oral Pathol Med,2016,45(6): 385–393. doi:
    [26] WU P, LUO S, ZHOU T, et al. Possible mechanisms involved in the cooccurrence of oral lichen planus and Hashimoto’s thyroiditis. Mediators Inflamm, 2020, 2020: 6309238[2022-03-19]. .
    [27] YANG X, LI C, PAN Y. The influences of periodontal status and periodontal pathogen quantity on salivary 8-hydroxydeoxyguanosine and interleukin-17 levels. J Periodontol,2016,87(5): 591–600. doi:
    [28] MIRANDA T S, FIGUEIREDO N F, FIGUEIREDO L C, et al. Cytokine profiles of healthy and diseased sites in individuals with periodontitis. Arch Oral Biol, 2020, 120: 104957[2022-03-19]. .
    [29] CAI Y, KOBAYASHI R, HASHIZUME-TAKIZAWA T, et al. Porphyromonas gingivalis infection enhances Th17 responses for development of atherosclerosis. Arch Oral Biol,2014,59(11): 1183–1191. doi:
    [30] SHI B, LUX R, KLOKKEVOLD P, et al. The subgingival microbiome associated with periodontitis in type 2 diabetes mellitus. ISME J,2020,14(2): 519–530. doi:
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  15
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-14
  • 修回日期:  2022-12-15
  • 刊出日期:  2023-03-22

目录

    /

    返回文章
    koko体育app:返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!