koko体育app

欢迎来到《koko体育app 学报(医学版)》
牙龈上皮細胞间联接与牙体致病性菌联系的科研最新动态

黄培勍 贾小玥 赵蕾 周学东 徐欣

黄培勍, 贾小玥, 赵蕾, 等. 牙龈上皮细胞间连接与牙周致病菌关系的研究进展[J]. koko体育app 学报(医学版), 2022, 53(2): 214-219. doi: 10.12182/20220360201
引用本文: 黄培勍, 贾小玥, 赵蕾, 等. 牙龈上皮细胞间连接与牙周致病菌关系的研究进展[J]. koko体育app 学报(医学版), 2022, 53(2): 214-219. doi:
HUANG Pei-qing, JIA Xiao-yue, ZHAO Lei, et al. Research Updates: Relationship between Gingival Epithelial Intercellular Junctions and Periodontal Pathogenic Bacteria[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 214-219. doi: 10.12182/20220360201
Citation: HUANG Pei-qing, JIA Xiao-yue, ZHAO Lei, et al. Research Updates: Relationship between Gingival Epithelial Intercellular Junctions and Periodontal Pathogenic Bacteria[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 214-219. doi:

牙龈上皮细胞间连接与牙周致病菌关系的研究进展

doi: 
基金项目: 国家自然科学基金(No. 81771099)和koko体育app 华西口腔医院临床队列研究项目(No. LCYJ2019-4)资助
详细信息
    通讯作者:

    E-mail:nixux1982@hotmail.com

Research Updates: Relationship between Gingival Epithelial Intercellular Junctions and Periodontal Pathogenic Bacteria

More Information
  • 摘要: 牙龈上皮屏障是抵御致病菌侵入牙周组织的第一道防线,与牙周疾病的发生发展密切相关。牙周致病菌及其感染炎症微环境可通过下调粒状头样蛋白家族蛋白表达,以及上调上皮连接蛋白编码基因启动子甲基化水平等相关分子机制,抑制牙龈上皮连接蛋白表达,破坏牙龈上皮屏障功能,促进牙周炎的发生发展。本文就细菌及其感染后诱导产生的炎症因子对牙龈上皮细胞间连接的影响以及相关机制等方面对近年来牙龈上皮细胞间连接与牙周致病菌关系的研究进展作一综述。当前研究多集中于单一细菌感染的体外细胞学实验与动物模型研究。koko体育app 建议,建立牙龈上皮类器官研究模型,采用多组学研究技术与高分辨三维电镜成像,有望进一步锁定驱动牙周微生态失衡、导致牙龈上皮屏障功能破坏的核心微生物及其关键致病毒力因子,揭示参与牙龈上皮屏障功能维持和破坏的关键细胞分子机制,为牙周炎的发病机制与临床防治提供新的思路。
  • koko体育app

    图  1  牙龈上皮细胞间连接及相关蛋白

    Figure  1.  ꦜ Gingival epithelial intercellular junctions and the relevant proteins

    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] AKDIS C A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol,2021,21(11): 739–751. doi:
    [2] JI S, CHOI Y. Microbial and host factors that affect bacterial invasion of the gingiva. J Dent Res,2020,99(9): 1013–1020. doi:
    [3] LEE J S, YILMAZ O. Key elements of gingival epithelial homeostasis upon bacterial interaction. J Dent Res,2021,100(4): 333–340. doi:
    [4] SLIFER Z, BLIKSLAGER A. The integral role of tight junction proteins in the repair of injured intestinal epithelium. Int J Mol Sci, 2020, 21(3): 972[2022-08-17]. .
    [5] ROSENTHAL R, GÜNZEL D, THEUNE D, et al. Water channels and barriers formed by claudins. Ann N Y Acad Sci,2017,1397(1): 100–109. doi:
    [6] BEN LAGHA A, YANG Y, TRIVEDI H, et al. A Dual zinc plus Arginine formulation protects against tumor necrosis factor-alpha-induced barrier dysfunction and enhances cell proliferation and migration in an in vitro gingival keratinocyte model. Arch Oral Biol, 2021, 126: 105126[2022-08-17]. .
    [7] GAO X, ACHARYA B R, ENGL W C O, et al. Probing compression versus stretch activated recruitment of cortical actin and apical junction proteins using mechanical stimulations of suspended doublets. Apl Bioengineering, 2018, 2(2): 026111[2022-08-17]. .
    [8] KUMMER D, EBNET K. Junctional adhesion molecules (JAMs): The JAM-integrin connection. Cells, 2018, 7(4): 25[2022-08-17]. .
    [9] YE P, YU H, SIMONIAN M, et al. Expression patterns of tight junction components induced by CD24 in an oral epithelial cell-culture model correlated to affected periodontal tissues. J Periodontal Res,2014,49(2): 253–259. doi:
    [10] PARK J S, BURCKHARDT C J, LAZCANO R, et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature,2020,578(7796): 621–626. doi:
    [11] FRANCIS H, KENNEDY L, ALPINI G. Dual ablation of β- and γ-catenin: Critical regulators of junctions and their functions. Hepatology,2018,67(6): 2079–2081. doi:
    [12] GUL I S, HULPIAU P, SAEYS Y, et al. Evolution and diversity of cadherins and catenins. Exp Cell Res,2017,358(1): 3–9. doi:
    [13] WONG P, LAXTON V, SRIVASTAVA S, et al. The role of gap junctions in inflammatory and neoplastic disorders (review). Int J Mol Med,2017,39(3): 498–506. doi:
    [14] BEYER E C, BERTHOUD V M. Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim Biophys Acta Biomembr,2018,1860(1): 5–8. doi:
    [15] WHITE F H, GOHARI K. A qualitative ultrastructural-study of the intercellular spaces between epithelial-cells treated invivo with DMBA. J Oral Pathol Med,1984,13(3): 231–243. doi:
    [16] ADIL M S, NARAYANAN S P, SOMANATH P R. Cell-cell junctions: Structure and regulation in physiology and pathology. Tissue Barriers, 2021, 9(1): e1848212[2022-08-17]. .
    [17] CELENTANO A, CIRILLO N. Desmosomes in disease: A guide for clinicians. Oral Dis,2017,23(2): 157–167. doi:
    [18] 王津津, 王新文, 王勤涛. 牙龈上皮屏障及其在牙周炎发生与发展中的作用. 中华口腔医学杂志,2014,49(10): 634–638. doi:
    [19] 张利平, 王爽, 徐屹. 上皮细胞连接及其与口腔致病菌间的关系. 国际口腔医学杂志,2012,39(3): 368–372. doi:
    [20] BOYANOVA L. Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria. Anaerobe, 2017, 44: 13-19[2022-08-17]. .
    [21] TAKAHASHI N, SULIJAYA B, YAMADA-HARA M, et al. Gingival epithelial barrier: Regulation by beneficial and harmful microbes. Tissue barriers, 2019, 7(3): e1651158[2022-08-17]. .
    [22] BEN LAGHA A, PELLERIN G, VAILLANCOURT K, et al. Effects of a tart cherry (Prunus cerasus L.) phenolic extract on Porphyromonas gingivalis and its ability to impair the oral epithelial barrier. PLoS One, 2021, 16(1): e0246194[2022-08-17]. .
    [23] TAKEUCHI H, SASAKI N, YAMAGA S, et al. Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1. PLoS Pathog, 2019, 15(11): e1008124[2022-08-17]. .
    [24] BUGUENO I, BATOOL F, KELLER L, et al. Porphyromonas gingivalis bypasses epithelial barrier and modulates fibroblastic inflammatory response in an in vitro 3D spheroid model. Sci Rep, 2018, 8(1): 14914. .
    [25] YU N, ZHANG J M, PHILLIPS S T, et al. Impaired function of epithelial plakophilin-2 is associated with periodontal disease. J Periodontal Res,2021,56(6): 1046–1057. doi:
    [26] 李雨阳, 孟维艳. 牙龈卟啉单胞菌抵抗固有免疫防御的研究进展. 口腔医学研究,2019,35(2): 113–115.
    [27] KATZ J, YANG Q B, ZHANG P, et al. Hydrolysis of epithelial junctional proteins by Porphyromonas gingivalis gingipains. Infect Immun,2002,70(5): 2512–2518. doi:
    [28] GROEGER S E, MEYLE J. Epithelial barrier and oral bacterial infection. Periodontol 2000,2015,69(1): 46–67. doi:
    [29] GUO W, WANG P, LIU Z H, et al. Analysis of differential expression of tight junction proteins in cultured oral epithelial cells altered by Porphyromonas gingivalis, Porphyromonas gingivalis lipopolysaccharide, and extracellular adenosine triphosphate. Int J Oral Sci, 2018, 10: e8[2022-08-17]. .
    [30] ABE-YUTORI M, CHIKAZAWA T, SHIBASAKI K, et al. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J Periodontal Res,2017,52(1): 42–50. doi:
    [31] FENG X, LIU J. A combination of irsogladine maleate and azithromycin exhibits addictive protective effects in LPS-induced human gingival epithelial cells. Pharmazie,2017,72(2): 91–94. doi:
    [32] KAN P, SASAKI H, INABA K, et al. Inhibitory effects of azithromycin on the adherence ability of Porphyromonas gingivalis. J Periodontol,2019,90(8): 903–910. doi:
    [33] NAKAGAWA I, AMANO A, INABA H, et al. Inhibitory effects of Porphyromonas gingivalis fimbriae on interactions between extracellular matrix proteins and cellular integrins. Microbes Infect,2005,7(2): 157–163. doi:
    [34] LIMA B P, SHI W Y, LUX R. Identification and characterization of a novel Fusobacterium nucleatum adhesin involved in physical interaction and biofilm formation with Streptococcus gordonii. Microbiologyopen, 2017, 6(3): e444[2022-08-17]. .
    [35] 李懿洋, 周学东. 具核梭杆菌与口腔常见微生物粘附作用的研究进展. 口腔医学研究,2021,37(4): 284–287.
    [36] LIU H, HONG X L, SUN T T, et al. Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. J Dig Dis,2020,21(7): 385–398. doi:
    [37] GURSOY U K, POELLAENEN M, KOENOENEN E, et al. Biofilm formation enhances the oxygen tolerance and invasiveness of Fusobacterium nucleatum in an oral mucosa culture model. J Periodontol,2010,81(7): 1084–1091. doi:
    [38] BEN LAGHA A, HUACHO P M, GRENIER D. A cocoa (Theobroma cacao L. ) extract impairs the growth, virulence properties, and inflammatory potential of Fusobacterium nucleatum and improves oral epithelial barrier function. PLoS One, 2021, 16(5): e0252029[2022-08-17]. .
    [39] ABDULKAREEM A A, SHELTON R M, LANDINI G, et al. Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial-mesenchymal transition. J Periodontal Res,2018,53(4): 565–574. doi:
    [40] DAMGAARD C, REINHOLDT J, ENEVOLD C, et al. Immunoglobulin G antibodies against Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans in cardiovascular disease and periodontitis. J Oral Microbiol, 2017, 9: 1374154[2022-08-17]. .
    [41] FUJITA T, ASHIKAGA A, SHIBA H, et al. Regulation of IL-8 by irsogladine maleate is involved in abolishment of Actinobacillus actinomycetemcomitans-induced reduction of gap-junctional intercellular communication. Cytokine,2006,34(5/6): 271–277. doi:
    [42] DAMEK-POPRAWA M, KOROSTOFF J, GILL R, et al. Cell junction remodeling in gingival tissue exposed to a microbial toxin. J Dent Res,2013,92(6): 518–523. doi:
    [43] UCHIDA Y, SHIBA H, KOMATSUZAWA H, et al. Irsogladine maleate influences the response of gap junctional intercellular communication and IL-8 of human gingival epithelial cells following periodontopathogenic bacterial challenge. Biochem Biophys Res Commun,2005,333(2): 502–507. doi:
    [44] TSAI C Y, TANG C Y, TAN T S, et al. Subgingival microbiota in individuals with severe chronic periodontitis. J Microbiol Immunol,2018,51(2): 226–234. doi:
    [45] UITTO V J, PAN Y M, LEUNG W K, et al. Cytopathic effects of treponema-denticola chymotrypsin-like proteinase on migrating and stratified epithelial-cells. Infect Immun,1995,63(9): 3401–3410. doi:
    [46] CHI B, QI M, KURAMITSU H K. Role of dentilisin in Treponema denticola epithelial cell layer penetration. Res Microbiol,2003,154(9): 637–643. doi:
    [47] KIKUCHI Y, KIMIZUKA R, KATO T, et al. Treponema denticola induces epithelial barrier dysfunction in polarized epithelial cells. Bull Tokyo Dent Coll,2018,59(4): 265–275. doi:
    [48] BELIBASAKIS G N, KAST J I, THURNHEER T, et al. The expression of gingival epithelial junctions in response to subgingival biofilms. Virulence,2015,6(7): 704–709. doi:
    [49] DUTZAN N, KONKEL J E, GREENWELL-WILD T, et al. Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol,2016,9(5): 1163–1172. doi:
    [50] KOCHI S, YAMASHIRO K, HONGO S, et al. Aggregatibacter actinomycetemcomitans regulates the expression of integrins and reduces cell adhesion via integrin alpha 5 in human gingival epithelial cells. Mol Cell Biochem,2017,436(1/2): 39–48. doi:
    [51] LV J, LIU Y S, JIA S H, et al. Carbon monoxide-releasing molecule-3 suppresses tumor necrosis factor-alpha- and interleukin-1 beta-induced expression of junctional molecules on human gingival fibroblasts via the heme oxygenase-1 pathway. Mediators Inflamm, 2020, 2020: 6302391[2022-08-17]. .
    [52] TADA H, NISHIOKA T, TAKASE A, et al. Porphyromonas gingivalis induces the production of interleukin-31 by human mast cells, resulting in dysfunction of the gingival epithelial barrier. Cell Microbiol, 2019, 21(3): 13[2022-08-17]. .
    [53] AZNAG F Z, EL KADMIRI N, IZAABEL E H. Tumor necrosis factor-alpha and tumor necrosis factor beta polymorphisms and risk of breast cancer: Review. Gene Rep, 2018, 12: 317-323[2022-08-17]. .
    [54] FUJITA T, YUMOTO H, SHIBA H, et al. Irsogladine maleate regulates epithelial barrier function in tumor necrosis factor-alpha-stimulated human gingival epithelial cells. J Periodontal Res,2012,47(1): 55–61. doi:
    [55] BEN LAGHA A, GRENIER D. Tea polyphenols protect gingival keratinocytes against TNF-alpha-induced tight junction barrier dysfunction and attenuate the inflammatory response of monocytes/macrophages. Cytokine, 2019, 115: 64-75[2022-08-17]. .
    [56] MIYAGAWA T, FUJITA T, YUMOTO H, et al. Azithromycin recovers reductions in barrier function in human gingival epithelial cells stimulated with tumor necrosis factor-alpha. Arch Oral Biol, 2016, 62: 64-69[2022-08-17]. .
    [57] FRANCO-TOPETE R, SERGIO ZEPEDA-NUNO J, LOURDES ZAMORA-PEREZ A, et al. IFN-gamma R2 is strongly expressed on endothelial cells of gingival tissues from patients with chronic periodontitis. J Appl Oral Sci, 2018, 26: e20170291[2022-08-17]. .
    [58] YE P. Modulation of epithelial tight junctions by TGF-beta 3 in cultured oral epithelial cells. Aust Dent J,2012,57(1): 11–17. doi:
    [59] WANG J, JI H F, WANG S X, et al. Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front Microbiol, 2018, 9: 1953[2022-08-17]. .
    [60] 唐冠楠, 颜宏利, 王玉招, 等. 粒状头样2(GRHL2)与肿瘤. 第二军医大学学报,2013,34(11): 1243–1247.
    [61] AUE A, HINZE C, WALENTIN K, et al. A Grainyhead-like 2/Ovo-like 2 pathway regulates renal epithelial barrier function and lumen expansion. J Am Soc Nephrol,2015,26(11): 2704–2715. doi:
    [62] CHEN W, ALSHAIKH A, KIM S, et al. Porphyromonas gingivalis impairs oral epithelial barrier through targeting GRHL2. J Dent Res,2019,98(10): 1150–1158. doi:
    [63] 原振英, 管翠强, 南欣荣. DNA甲基化与口腔疾病的研究进展. 国际口腔医学杂志,2019,46(4): 437–441.
    [64] 姜亦洋, 刘怡. 甲基化对牙周炎发生与发展的影响及临床应用. 国际口腔医学杂志,2019,46(5): 593–603.
    [65] BARROS S, HEFNI E, FAHIMIPOUR F, et al. Maintaining barrier function of infected gingival epithelial cells by inhibition of DNA methylation. J Periodontol, 2020: S68-S78[2022-08-17]. .
  • 加载中
图(1)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  88
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-16
  • 修回日期:  2023-01-27
  • 刊出日期:  2023-03-22

目录

    /

    返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!