koko体育app

欢迎来到《koko体育app 学报(医学版)》

frtR基因对变异链球菌产酸及脱矿能力影响的研究

敬美玲 卢淼 郑婷 龚涛 李雨庆 周学东

敬美玲, 卢淼, 郑婷, 等. frtR基因对变异链球菌产酸及脱矿能力影响的研究[J]. koko体育app 学报(医学版), 2022, 53(2): 263-267. doi: 10.12182/20220360104
引用本文: 敬美玲, 卢淼, 郑婷, 等. frtR基因对变异链球菌产酸及脱矿能力影响的研究[J]. koko体育app 学报(医学版), 2022, 53(2): 263-267. doi:
JING Mei-ling, LU Miao, ZHENG Ting, et al. frtR Gene Affects Acid Production and Demineralization Ability of Streptococcus mutans[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 263-267. doi: 10.12182/20220360104
Citation: JING Mei-ling, LU Miao, ZHENG Ting, et al. frtR Gene Affects Acid Production and Demineralization Ability of Streptococcus mutans[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 263-267. doi:

frtR基因对变异链球菌产酸及脱矿能力影响的研究

doi: 
基金项目: 国家自然科学基金面上项目(No. 31870065、No. 32170046)资助
详细信息
    通讯作者:

    E-mail:zhouxd@dikai.net.cn

frtR Gene Affects Acid Production and Demineralization Ability of Streptococcus mutans

More Information
  • 摘要:   目的  研究TetR家族frtR基因对变异链球菌产酸能力和诱导牙体脱矿能力的影响。  方法  检测frtR基因框内缺失株(ΔfrtR)及回复株(ΔfrtR/pDL278-frtR)的生长情况;通过共聚焦激光扫描显微镜观察菌株的生物膜结构,并用蒽酮-硫酸法定量检测生物膜中的水不溶性胞外多糖(extracellular polysaccharide, EPS);通过糖酵解pH drop实验检测菌株的产酸能力;通过横断显微放射技术(transverse micro radiography, TMR)检测菌株诱导牛牙脱矿的能力。  结果  菌株生长曲线结果表明frtR基因对变异链球菌的生长无明显影响;共聚焦激光扫描显微镜观察结果显示frtR基因对变异链球菌生物膜形成无明显影响,硫酸-蒽酮法检测发现frtR基因对变异链球菌EPS合成亦无明显影响;糖酵解pH drop实验结果表明,当蔗糖为唯一碳源时,敲除frtR基因延缓了变异链球菌的产酸速率;TMR实验结果表明,敲除frtR基因降低了变异链球菌在牛牙表面诱导形成的脱矿深度和脱矿量。  结论  frtR基因缺失会减弱变异链球菌的产酸能力及诱导牙体组织脱矿能力。
  • koko体育app

    图  1  变异链球菌生长曲线(n=3)

    Figure  1.  The growth curves of Streptococcus mutans (S. mutans) (n=3)

    图  2  变异链球菌水不溶性EPS含量及生物膜形成

    Figure  2.  The water-insoluble EPS content and biofilm formation of S. mutans strains

    A: Water-insoluble EPS content of biofilms quantified using the anthrone-sulfuric method (a: S. mutans UA159, b: S. mutans ΔfrtR, c: ΔfrtR/pDL278-frtR, n=3); B: The biofilm dual-labeled images of EPS (red, Alexa Flour 647) and bacteria (green, SYTO 9), which were captured using a 60× oil immersion objective; C: The quantitative analysis of biofilms performed using COMSTAT and Image J (n=3).

    图  3  变异链球菌在不同生长环境下的产酸能力

    Figure  3.  Acid production of S. mutans under different growing conditions

    Glycolytic pH drop of S. mutans solution with 1% sucrose (A), 1% fructose (B) and 1% glucose (C). n=3, *P<0.05, vs. UA159 and ΔfrtR/pDL278-frtR.

    图  4  变异链球菌菌株诱导牙釉质脱矿的检测结果

    Figure  4.  Measuring enamel demineralization induced by S. mutans

    A: The cross-section of demineralized enamel by transverse microradiography (TMR); B: The mineral loss of enamel; C: The depth of enamel lesion. n=5, ****P<0.01.

    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] MACHIULSKIENE V, CAMPUS G, CARVALHO J C, et al. Terminology of dental caries and dental caries management: Consensus report of a workshop organized by ORCA and cariology research group of IADR. Caries Res,2020,54(1): 7–14. doi:
    [2] VALM A M. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J Mol Biol,2019,431(16): 2957–2969. doi:
    [3] BOWEN W H, BURNE R A, WU H, et al. Oral biofilms: Pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol,2018,26(3): 229–242. doi:
    [4] 陈婧, 程磊, 周学东, 等. 龋病微生物因素研究进展. 华西口腔医学杂志,2018,36(1): 104–108. doi:
    [5] VADEBONCOEUR C, PELLETIER M. The phosphoenolpyruvate: sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev,1997,19(3): 187–207. doi:
    [6] TAKAHASHI N. Oral microbiome metabolism: From "Who Are They"? to "What Are They Doing"? J Dent Res,2015,94(12): 1628–1637. doi:
    [7] AJDIĆ D, MCSHAN W M, MCLAUGHLIN R E, et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A,2002,99(22): 14434–14439. doi:
    [8] ZENG L, BURNE R A. Molecular mechanisms controlling fructose-specific memory and catabolite repression in lactose metabolism by Streptococcus mutans. Mol Microbiol,2021,115(1): 70–83. doi:
    [9] SEKIYA M, IZUMISAWA S, IWAMOTO-KIHARA A, et al. Proton-pumping F-ATPase plays an important role in Streptococcus mutans under acidic conditions. Arch Biochem Biophys,2019,666: 46–51. doi:
    [10] 吴攀攀, 李博文, 陈克涛, 等. TetR家族转录调控因子配体的研究进展. 生物工程学报,2021,37(7): 2379–2392.
    [11] WANG K, SYBERS D, MAKLAD H R, et al. A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius. Nat Commun,2019,10(1): 1542. doi:
    [12] GRAU F C, JAEGER J, GROHER F, et al. The complex formed between a synthetic RNA aptamer and the transcription repressor TetR is a structural and functional twin of the operator DNA-TetR regulator complex. Nucleic Acids Res,2020,48(6): 3366–3378. doi:
    [13] ZHOU S, BHUKYA H, MALET N, et al. Molecular basis for control of antibiotic production by a bacterial hormone. Nature,2021,590(7846): 463–467. doi:
    [14] 倪静姝, 汪焰胜, 吴杭, 等. 放线菌中与抗生素合成相关TetR家族转录因子的研究进展. 微生物学通报,2019,46(2): 407–414.
    [15] LU M, XIANG Z, GONG T, et al. Intrinsic fluoride tolerance regulated by a transcription factor. J Dent Res,2020,99(11): 1270–1278. doi:
    [16] VIJAYAKUMAR K, MUHILVANNAN S. 3, 5-Di-tert-butylphenol combat against Streptococcus mutans by impeding acidogenicity, acidurance and biofilm formation. World J Microbiol Biotechnol,2021,37(12): 202. doi:
    [17] FAN M, ZHANG M, XU H, et al. Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro. Dent Mater,2020,36(2): 210–220. doi:
    [18] ABRANCHES J, ZENG L, KAJFASZ J K, et al. Biology of oral Streptococci. Microbiol Spectr,2018,6(5): 10.1128/microbiolspec. GPP3-0042-2018. doi:
    [19] PITTS N B, ZERO D T, MARSH P D, et al. Dental caries. Nat Rev Dis Primers, 2017, 3: 17030[2022-10-15]. . doi: .
    [20] BITOUN J P, WEN Z T. Transcription factor Rex in regulation of pathophysiology in oral pathogens. Mol Oral Microbiol,2016,31(2): 115–124. doi:
    [21] BITOUN J P, LIAO S, YAO X, et al. The redox-sensing regulator Rex modulates central carbon metabolism, stress tolerance response and biofilm formation by Streptococcus mutans. PLoS One, 2012, 7(9): e44766[2022-10-15]. .
    [22] KIM J N, BURNE R A. CcpA and CodY coordinate acetate metabolism in Streptococcus mutans. Appl Environ Microbiol, 2017, 83(7): e03274−16[2022-10-15]. .
    [23] COLCLOUGH A L, SCADDEN J, BLAIR J M A. TetR-family transcription factors in Gram-negative bacteria: conservation, variation and implications for efflux-mediated antimicrobial resistance. BMC Genomics,2019,20(1): 731. doi:
    [24] SARANATHAN R, PAGAL S, SAWANT A R, et al. Disruption of tetR type regulator adeN by mobile genetic element confers elevated virulence in Acinetobacter baumannii. Virulence,2017,8(7): 1316–1334. doi:
    [25] DONG W, NIE X, ZHU H, et al. Mycobacterial fatty acid catabolism is repressed by FdmR to sustain lipogenesis and virulence. Proc Natl Acad Sci U S A, 2021, 118(16): e2019305118[2022-10-15]. .
    [26] CHRISTEN S, SRINIVAS A, BÄHLER P, et al. Regulation of the Dha operon of Lactococcus lactis: A deviation from the rule followed by the Tetr family of transcription regulators. J Biol Chem,2006,281(32): 23129–23137. doi:
    [27] JIMÉNEZ J I, JUÁREZ J F, GARCÍA J L, et al. A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida. Environ Microbiol,2011,13(7): 1718–1732. doi:
    [28] CHENG M, PEI D, HE X, et al. The operon encoding hydrolytic dehalogenation of 4-chlorobenzoate is transcriptionally regulated by the TetR-type repressor FcbR and its ligand 4-chlorobenzoyl coenzyme A. Appl Environ Microbiol, 2021, 87(6): e02652-20[2022-10-15]. .
  • 加载中
图(4)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  12
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2022-12-14
  • 刊出日期:  2023-03-22

目录

    /

    返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!