koko体育app

欢迎来到《koko体育app 学报(医学版)》
龋病koko体育app 吐液菌群动图变化规律及职能定性分析

王媛 张杰 凌宗欣 邓淑丽

王媛, 张杰, 凌宗欣, 等. 龋病koko体育app 唾液菌群动态变化及功能分析[J]. koko体育app 学报(医学版), 2022, 53(2): 242-249. doi: 10.12182/20220360103
引用本文: 王媛, 张杰, 凌宗欣, 等. 龋病koko体育app 唾液菌群动态变化及功能分析[J]. koko体育app 学报(医学版), 2022, 53(2): 242-249. doi:
WANG Yuan, ZHANG Jie, LING Zong-xin, et al. Dynamic Microbial Shifts and Functional Analysis of Saliva Microbial Communities with Caries Children[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 242-249. doi: 10.12182/20220360103
Citation: WANG Yuan, ZHANG Jie, LING Zong-xin, et al. Dynamic Microbial Shifts and Functional Analysis of Saliva Microbial Communities with Caries Children[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(2): 242-249. doi:

龋病koko体育app 唾液菌群动态变化及功能分析

doi: 
基金项目: 浙江省“尖兵”“领雁”研发攻关计划(No. 2022C03060)、国家自然科学基金项目(No. 81371142)、浙江省自然科学基金项目(No. LQ19H140002)和中国医学科学院中央级公益性科研院所基本科研业务费专项资金(No. 2020-JKCS-025)资助
详细信息
    通讯作者:

    E-mail:dengshuli@zju.edu.cn

Dynamic Microbial Shifts and Functional Analysis of Saliva Microbial Communities with Caries Children

More Information
  • 摘要:   目的  观察龋病和无龋koko体育app 唾液菌群的动态变化,同时对二者口腔微生态在糖代谢及多种氨基酸合成转运过程中的功能差异进行分析。  方法  采用宏基因组学的方法分别对10例无龋koko体育app 和10例龋病koko体育app 唾液菌群进行组成及功能分析,6个月后,进一步利用PacBio SMRT测序技术,分析两组koko体育app 口腔菌群变化,探索疾病和健康状态下,口腔菌群变化规律,从组成到功能对koko体育app 口腔微生态进行全面解读。  结果  随时间推移,两组koko体育app 口腔微生态组成发生显著改变,在门水平上,菌群变化趋势一致,Firmicutes比例增加,而ActinobacteriaBacteroidetes比例降低。在属水平上,两组koko体育app 唾液菌群的变化出现差异,其中,LactobacillusMethylobacteriumMegasphaera在龋病组koko体育app 中的丰度呈上升趋势,而在无龋组koko体育app 中呈下降趋势。在种水平上,隶属于乳杆菌属的L. fermentumL. gasseriL.orisS. downei等菌株在龋病koko体育app 中呈上升趋势,但在无龋koko体育app 中始终处于较低水平。S. gordonii以及S. mutans在龋病koko体育app 中有一定程度下降,但在无龋koko体育app 中始终处于低水平。S. mutansC. gracilis等菌种与龋失补牙数(decayed, missing and filled teeth, dmft)呈正相关,而N. flavescens与dmft呈负相关。三羧酸循环关键节点相关基因,gltAicd以及mqo,谷氨酸生成相关基因gudB以及精氨酸生成相关基因argAB/C/J在无龋koko体育app 中丰度显著增加。同时,电子传递链中的NADH脱氢酶相关基因nuoB/C/D/E/H/I/J/K/L/M在无龋koko体育app 中的丰度显著增加。  结论  koko体育app 唾液菌群是动态变化的,其变化趋势与口腔健康状态有关,健康的口腔微生态中有更广泛的氧化磷酸化,谷氨酸以及精氨酸等氨基酸生成和转运也更为活跃。
  • koko体育app

    图  1  门水平上两组koko体育app 口腔细菌随时间的动态变化

    Figure  1.  🔴 The dynamic changes of oral bacteria in children with or without dental caries at the phylum level over time

    *P<0.05, vs. 0 month caries group; #P<0.05, vs. 0 month caries free group. n=10.

    图  2  属水平上两组koko体育app 口腔细菌随时间的动态变化

    Figure  2.  ꦅ The dynamic changes of oral bacteria at the genus level in children with or without dental caries over time

    *P<0.05, vs. 0 month caries group; # P<0.05, vs. 0 month caries free group. △ P<0.05, vs. caries free group at the same time point. n=10.

    图  3  种水平上两组koko体育app 口腔细菌随时间的动态变化

    Figure  3.  ﷽ The dynamic changes of oral bacteria at the species level in children with or without dental caries over time

    *P<0.05, vs. 0 month caries group; # P<0.05, vs. 0 month caries free group; Δ P<0.05, vs. caries free group at the same time point. n=10.

    图  4  糖代谢及氨基酸合成过程中关键基因差异分析

    Figure  4.  🌌 Analysis of differences in key genes involved in glucose metabolism and amino acid synthesis

    KEGG: Kyoto Encyclopedia of Genes and Genomes database. A: Key gene abundance for TCA cycle; B: Key gene abundance for glutamate and arginine cycle key genes synthesis; C: Abundance of NADH dehydrogenase related genes. *P<0.05. n=10.

    图  5  腐胺及氨基酸运输过程关键基因差异分析

    Figure  5.  🤡 Analysis of differences in key genes involved in putrescine and amino acid transportation

    ESS: Electrochemical sodium symporter; NSS: Neurotransmitter sodium symporter; AGCS: Alanine or glycine cation symporter. A: Key gene abundance for putrescine transport system; B: The ESS family represents glutamate: Na+ symporter; The NSS family represents neurotransmitter: Na+ symporter; The AGCS family represents alanine or glycine: cation symporter. *P<0.05. n=10.

    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] PERES M A, MACPHERSON L M D, WEYANT R J, et al. Oral diseases: A global public health challenge. Lancet,2019,394(10194): 249–260. doi:
    [2] KITAMOTO S, NAGAO-KITAMOTO H, JIAO Y, et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell, 2020, 182(2): 447−462.e14[2022-04-21]. . doi: .
    [3] HAJISHENGALLIS G, CHAVAKIS T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol,2021,21(7): 426–440. doi:
    [4] ATARASHI K, SUDA W, LUO C, et al. Ectopic colonization of oral bacteria in the intestine drives T(H)1 cell induction and inflammation. Science,2017,358(6361): 359–365. doi:
    [5] GOMEZ A, ESPINOZA J L, HARKINS D M, et al. Host genetic control of the oral microbiome in health and disease. Cell Host Microbe, 2017, 22(3): 269-278.e3[2022-04-21]. . doi: .
    [6] EBERSOLE J L, DAWSON D A, 3rd, EMECEN HUJA P, et al. Age and periodontal health—Immunological view. Curr Oral Health Rep,2018,5(4): 229–241. doi:
    [7] BELIBASAKIS G N. Microbiological changes of the ageing oral cavity. Arch Oral Biol,2018,96: 230–232. doi:
    [8] GAFFEN S L, MOUTSOPOULOS N M. Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity. Sci Immunol, 2020, 5(43): eaau4594[2022-04-21]. . doi: .
    [9] FREIRE M, NELSON K E, EDLUND A. The oral host-microbial interactome: An ecological chronometer of health? Trends Microbiol,2021,29(6): 551–561. doi:
    [10] WANG Y, WANG S, WU C, et al. Oral microbiome alterations associated with early childhood caries highlight the importance of carbohydrate metabolic activities. mSystems, 2019, 4(6): e00450-19[2022-04-21]. . doi: .
    [11] WANG Y, ZHANG J, CHEN X, et al. Profiling of oral microbiota in early childhood caries using single-molecule real-time sequencing. Front Microbiol, 2017, 8: 2244[2022-04-21]. . doi: .
    [12] BRAGA M M, OLIVEIRA L B, BONINI G A, et al. Feasibility of the International Caries Detection and Assessment System (ICDAS-Ⅱ) in epidemiological surveys and comparability with standard World Health Organization criteria. Caries Res,2009,43(4): 245–249. doi:
    [13] IRANZO-CORTÉS J E, MONTIEL-COMPANY J M, ALMERICH-SILLA J M. Caries diagnosis: Agreement between WHO and ICDAS Ⅱ criteria in epidemiological surveys. Community Dent Health,2013,30(2): 108–111.
    [14] JIANG W, LING Z, LIN X, et al. Pyrosequencing analysis of oral microbiota shifting in various caries states in childhood. Microb Ecol,2014,67(4): 962–969. doi:
    [15] DZIDIC M, COLLADO M C, ABRAHAMSSON T, et al. Oral microbiome development during childhood: An ecological succession influenced by postnatal factors and associated with tooth decay. ISME J,2018,12(9): 2292–2306. doi:
    [16] PHILIP N, LEISHMAN S J, BANDARA H, et al. Randomized controlled study to evaluate microbial ecological effects of CPP-ACP and cranberry on dental plaque. JDR Clin Trans Res,2020,5(2): 118–126. doi:
    [17] TENG F, YANG F, HUANG S, et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe,2015,18(3): 296–306. doi:
    [18] TOVILLA-COUTIÑO D B, MOMANY C, EITEMAN M A. Engineered citrate synthase alters acetate accumulation in Escherichia coli. Metab Eng,2020,61: 171–180. doi:
    [19] LIU Z, YU W, NOMURA C T, et al. Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2. Appl Microbiol Biotechnol,2018,102(16): 6935–6946. doi:
    [20] PARK S A, BHATIA S K, PARK H A, et al. Bacillus subtilis as a robust host for biochemical production utilizing biomass. Crit Rev Biotechnol,2021,41(6): 827–848. doi:
    [21] YOKOTA A, SAWADA K, WADA M. Boosting anaplerotic reactions by pyruvate kinase gene deletion and phosphoenolpyruvate carboxylase desensitization for glutamic acid and lysine production in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol,2017,159: 181–198. doi:
    [22] ITO T, GALLEGOS R, MATANO L M, et al. Genetic and biochemical analysis of anaerobic respiration in Bacteroides fragilis and tts importance in vivo. mBio, 2020, 11(1): e03238-19[2022-04-21]. . doi: .
    [23] NASCIMENTO M M. Potential uses of arginine in dentistry. Adv Dent Res,2018,29(1): 98–103. doi:
    [24] EICK S, LUSSI A. Arginine: A weapon against cariogenic biofilm? Monogr Oral Sci,2021,29: 80–90. doi:
    [25] SUZUMURA S, TUJIOKA K, YAMADA T, et al. Comparison of the effects of ornithine and arginine on the brain protein synthesis rate in young rats. J Nutr Sci Vitaminol (Tokyo),2015,61(5): 417–421. doi:
    [26] MATSUO H, IWAMOTO A, OTSUKA T, et al. Effects of time of L-ornithine administration on the diurnal rhythms of plasma growth hormone, melatonin, and corticosterone levels in mice. Chronobiol Int,2015,32(2): 225–234. doi:
    [27] XU J, ZHU C, ZHANG M, et al. Arginine reverses growth hormone resistance through the inhibition of toll-like receptor 4-mediated inflammatory pathway. Metabolism,2018,79: 10–23. doi:
    [28] MOUTSOPOULOS N M, KONKEL J E. Tissue-Specific immunity at the oral mucosal barrier. Trends Immunol,2018,39(4): 276–287. doi:
    [29] GEIGER R, RIECKMANN J C, WOLF T, et al. L-Arginine modulates T Cell metabolism and enhances survival and anti-tumor activity. Cell, 2016, 167(3): 829−842.e13[2022-04-21]. . doi: .
    [30] FULTANG L, BOOTH S, YOGEV O, et al. Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood,2020,136(10): 1155–1160. doi:
    [31] LEE Y C, SU Y T, LIU T Y, et al. L-Arginine and L-Citrulline supplementation have different programming effect on regulatory T-Cells function of infantile rats. Front Immunol, 2018, 9: 2911[2022-04-21]. . doi: .
    [32] CRUZAT V, MACEDO ROGERO M, NOEL KEANE K, et al. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients, 2018, 10(11): 1564[2022-04-21]. . doi: .
    [33] SHOUVAL R, ESHEL A, DUBOVSKI B, et al. Patterns of salivary microbiota injury and oral mucositis in recipients of allogeneic hematopoietic stem cell transplantation. Blood Adv,2020,4(13): 2912–2917. doi:
  • 加载中
图(5)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  13
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 修回日期:  2023-01-20
  • 刊出日期:  2023-03-22

目录

    /

    返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!