欢迎来到《koko体育app 学报(医学版)》

石言彪 高偲佳 王会

石言彪, 高偲佳, 王会. 短链脂肪酸调控过敏性疾病研究进展[J]. koko体育app 学报(医学版), 2022, 53(1): 28-34. doi: 10.12182/20220160503
引用本文: 石言彪, 高偲佳, 王会. 短链脂肪酸调控过敏性疾病研究进展[J]. koko体育app 学报(医学版), 2022, 53(1): 28-34. doi:
SHI Yan-biao, GAO Si-jia, WANG Hui. Research Progress in Regulation of Allergic Diseases by Short-Chain Fatty Acids[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(1): 28-34. doi: 10.12182/20220160503
Citation: SHI Yan-biao, GAO Si-jia, WANG Hui. Research Progress in Regulation of Allergic Diseases by Short-Chain Fatty Acids[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(1): 28-34. doi:


基金项目: 国家自然科学基金(No. 31800750、No. 82171791)和徐州医科大学优秀人才启动基金(No. D2018009)资助

    E-mail: hui.wang@xzhmu.edu.cn

Research Progress in Regulation of Allergic Diseases by Short-Chain Fatty Acids

More Information
  • 摘要: 肠道微生物群的代谢产物调控宿主与肠道微生物群之间的共生关系、肠道稳态以及多种人类疾病的发生。肠道菌群发酵降解不易消化的膳食性纤维产生包括乙酸、丙酸和丁酸在内的短链脂肪酸。尽管短链脂肪酸主要在肠道中高度富集,众多研究发现,短链脂肪酸参与调控包括肠炎、糖尿病、脂肪肝和肥胖等多种疾病的发生和发展。最近研究报道发现,短链脂肪酸作用于Ⅱ型辅助性T淋巴细胞(Th2)、Ⅱ型固有淋巴细胞(ILC2)、嗜酸性粒细胞、肥大细胞和嗜碱性粒细胞等多种过敏效应细胞影响过敏性疾病的发生。本综述将介绍短链脂肪酸与过敏性疾病的临床相关性以及其在过敏性疾病动物模型中的作用,并探讨其如何调控不同过敏效应细胞的功能和相关作用机制。希望为今后深入探讨短链脂肪酸在不同过敏性疾病中的作用提供研究思路。
  • [1] HONDA K, LITTMAN D R. The microbiota in adaptive immune homeostasis and disease. Nature,2016,535(7610): 75–84. doi:
    [2] MASLOWSKI K M, VIEIRA A T, NG A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature,2009,461(7268): 1282–1286. doi:
    [3] ERNY D, HRABE DE ANGELIS A L, JAITIN D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci,2015,18(7): 965–977. doi:
    [4] SINGH N, GURAV A, SIVAPRAKASAM S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity,2014,40(1): 128–139. doi:
    [5] KOETH R A, WANG Z, LEVISON B S, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med,2013,19(5): 576–585. doi:
    [6] ROOKS M G, GARRETT W S. Gut microbiota, metabolites and host immunity. Nat Rev Immunol,2016,16(6): 341–352. doi:
    [7] TAN J, MCKENZIE C, POTAMITIS M, et al. The role of short-chain fatty acids in health and disease. Adv Immunol,2014,121: 91–119. doi:
    [8] DALILE B, VAN OUDENHOVE L, VERVLIET B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol,2019,16(8): 461–478. doi:
    [9] AGACHE I, AKDIS C A. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest,2019,129(4): 1493–1503. doi:
    [10] CUMMINGS J H, POMARE E W, BRANCH W J, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut,1987,28(10): 1221–1227. doi:
    [11] SCHONFELD P, WOJTCZAK L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res,2016,57(6): 943–954. doi:
    [12] BLOEMEN J G, VENEMA K, VAN DE POLL M C, et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin Nutr,2009,28(6): 657–661. doi:
    [13] SELTZER M A, JAHAN S A, SPARKS R, et al. Radiation dose estimates in humans for (11)C-acetate whole-body PET. J Nucl Med,2004,45(7): 1233–1236.
    [14] NIEDERMAN R, BUYLE-BODIN Y, LU B Y, et al. Short-chain carboxylic acid concentration in human gingival crevicular fluid. J Dent Res,1997,76(1): 575–579. doi:
    [15] GHORBANI P, SANTHAKUMAR P, HU Q, et al. Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth. Eur Respir J,2015,46(4): 1033–1045. doi:
    [16] PAPARO L, NOCERINO R, CIAGLIA E, et al. Butyrate as a bioactive human milk protective component against food allergy. Allergy,2021,76(5): 1398–1415. doi:
    [17] LE POUL E, LOISON C, STRUYF S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem,2003,278(28): 25481–25489. doi:
    [18] THANGARAJU M, CRESCI G A, LIU K, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res,2009,69(7): 2826–2832. doi:
    [19] PRIYADARSHINI M, KOTLO K U, DUDEJA P K, et al. Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr Physiol,2018,8(3): 1091–1115. doi:
    [20] TAZOE H, OTOMO Y, KARAKI S, et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res,2009,30(3): 149–156. doi:
    [21] NOHR M K, EGEROD K L, CHRISTIANSEN S H, et al. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience,2015,290: 126–137. doi:
    [22] THEILER A, BARNTHALER T, PLATZER W, et al. Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival. J Allergy Clin Immunol,2019,144(3): 764–776. doi:
    [23] WEN T, ARONOW B J, ROCHMAN Y, et al. Single-cell RNA sequencing identifies inflammatory tissue T cells in eosinophilic esophagitis. J Clin Invest,2019,129(5): 2014–2028. doi:
    [24] SHI Y, XU M, PAN S, et al. Induction of the apoptosis, degranulation and IL-13 production of human basophils by butyrate and propionate via suppression of histone deacetylation. Immunology,2021,164(2): 292–304. doi:
    [25] THIO C L, CHI P Y, LAI A C, et al. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate. J Allergy Clin Immunol,2018,142(6): 1867–1883 e12. doi:
    [26] KARAKI S, MITSUI R, HAYASHI H, et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res,2006,324(3): 353–360. doi:
    [27] BROWN A J, GOLDSWORTHY S M, BARNES A A, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem,2003,278(13): 11312–11319. doi:
    [28] TUNARU S, KERO J, SCHAUB A, et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med,2003,9(3): 352–355. doi:
    [29] TAGGART A K, KERO J, GAN X, et al. (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem,2005,280(29): 26649–26652. doi:
    [30] PLUZNICK J L, PROTZKO R J, GEVORGYAN H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A,2013,110(11): 4410–4415. doi:
    [31] KOTLO K, ANBAZHAGAN A N, PRIYAMVADA S, et al. The olfactory G protein-coupled receptor (Olfr-78/OR51E2) modulates the intestinal response to colitis. Am J Physiol Cell Physiol,2020,318(3): C502–C513. doi:
    [32] MARKS P A, RICHON V M, MILLER T, et al. Histone deacetylase inhibitors. Adv Cancer Res,2004,91: 137–168. doi:
    [33] WALDECKER M, KAUTENBURGER T, DAUMANN H, et al. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem,2008,19(9): 587–593. doi:
    [34] SOLIMAN M L, ROSENBERGER T A. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol Cell Biochem,2011,352(1-2): 173–180. doi:
    [35] DAVIE J R. Inhibition of histone deacetylase activity by butyrate. J Nutr,2003,133(7 Suppl): 2485S–2493S. doi:
    [36] KENDRICK S F, O'BOYLE G, MANN J, et al. Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology,2010,51(6): 1988–1997. doi:
    [37] OLANIYI K S, AMUSA O A. Sodium acetate-mediated inhibition of histone deacetylase alleviates hepatic lipid dysregulation and its accompanied injury in streptozotocin-nicotinamide-induced diabetic rats. Biomed Pharmacother, 2020, 128: 110226[2022-12-07].
    [38] ARPAIA N, CAMPBELL C, FAN X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature,2013,504(7480): 451–455. doi:
    [39] SANDIN A, BRABACK L, NORIN E, et al. Faecal short chain fatty acid pattern and allergy in early childhood. Acta Paediatr,2009,98(5): 823–827. doi:
    [40] RODUIT C, FREI R, FERSTL R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy,2019,74(4): 799–809. doi:
    [41] THORBURN A N, MCKENZIE C I, SHEN S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun,2015,6: 7320[2022-12-07]. http://www.nature.com/articles/ncomms8320. doi:
    [42] KANG M J, LEE S Y, PARK Y M, et al. Interactions between IL-17 variants and streptococcus in the gut contribute to the development of atopic dermatitis in infancy. Allergy Asthma Immunol Res,2021,13(3): 404–419. doi:
    [43] RUSSELL S L, GOLD M J, HARTMANN M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep,2012,13(5): 440–447. doi:
    [44] LYNN M A, TUMES D J, CHOO J M, et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice. Cell Host Microbe, 2018, 23(5): 653−660 e5[2022-12-07]. .
    [45] TROMPETTE A, GOLLWITZER E S, YADAVA K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med,2014,20(2): 159–166. doi:
    [46] LEWIS G, WANG B, SHAFIEI JAHANI P, et al. Dietary fiber-induced microbial short chain fatty acids suppress ILC2-dependent airway inflammation. Front Immunol,2019,10: 2051[2022-12-07]. http://doi.org/10.3389/fimmu.2019.02051. doi:
    [47] STARK J M, TIBBITT C A, COQUET J M. The metabolic requirements of Th2 cell differentiation. Front Immunol,2019,10: 2318[2022-12-07]. http://doi.org/10.3389/fimmu.2019.02318. doi:
    [48] HAN S, LU J, ZHANG Y, et al. HDAC inhibitors TSA and sodium butyrate enhanced the human IL-5 expression by altering histone acetylation status at its promoter region. Immunol Lett,2007,108(2): 143–150. doi:
    [49] VALAPOUR M, GUO J, SCHROEDER J T, et al. Histone deacetylation inhibits IL4 gene expression in T cells. J Allergy Clin Immunol,2002,109(2): 238–245. doi:
    [50] NAGASHIMA H, OKUYAMA Y, FUJITA T, et al. GITR cosignal in ILC2s controls allergic lung inflammation. J Allergy Clin Immunol,2018,141(5): 1939–1943 e8. doi:
    [51] OHNE Y, SILVER J S, THOMPSON-SNIPES L, et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat Immunol,2016,17(6): 646–655. doi:
    [52] FULKERSON P C, ROTHENBERG M E. Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov,2013,12(2): 117–129. doi:
    [53] SIMON D, BRAATHEN L R, SIMON H U. Eosinophils and atopic dermatitis. Allergy,2004,59(6): 561–570. doi:
    [54] OLIVERA A, BEAVEN M A, METCALFE D D. Mast cells signal their importance in health and disease. J Allergy Clin Immunol,2018,142(2): 381–393. doi:
    [55] ZHANG H, DU M, YANG Q, et al. Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase. J Nutr Biochem,2016,27: 299–306. doi:
    [56] FOLKERTS J, REDEGELD F, FOLKERTS G, et al. Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy,2020,75(8): 1966–1978. doi:
    [57] KARASUYAMA H, MUKAI K, OBATA K, et al. Nonredundant roles of basophils in immunity. Annu Rev Immunol,2011,29: 45–69. doi:
    [58] ITO Y, SATOH T, TAKAYAMA K, et al. Basophil recruitment and activation in inflammatory skin diseases. Allergy,2011,66(8): 1107–1113. doi:
    [59] DIJKSTRA D, HENNIG C, HANSEN G, et al. Identification and quantification of basophils in the airways of asthmatics following segmental allergen challenge. Cytometry A,2014,85(7): 580–587. doi:
    [60] YOSHIMURA C, YAMAGUCHI M, IIKURA M, et al. Activation markers of human basophils: CD69 expression is strongly and preferentially induced by IL-3. J Allergy Clin Immunol,2002,109(5): 817–823. doi:
    [61] KNOL E F, MUL F P, LIE W J, et al. The role of basophils in allergic disease. Eur Respir J Suppl,1996,22: 126s–131s.
    [62] HONG L, TANG Y Y, PAN S, et al. Interleukin 3-induced GITR promotes the activation of human basophils. Cytokine, 2020, 136: 155268[2022-12-07]. .
    [63] HERBST T, SICHELSTIEL A, SCHAR C, et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med,2011,184(2): 198–205. doi:
  • 加载中
  • 文章访问数:  171
  • HTML全文浏览量:  89
  • PDF下载量:  67
  • 被引次数: 0
  • 收稿日期:  2022-10-08
  • 修回日期:  2022-12-09
  • 网络出版日期:  2023-01-24
  • 刊出日期:  2023-01-24



    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!