欢迎来到《koko体育app 学报(医学版)》

李宇婷 谭香玉 黄柳娜 马理想 付利

李宇婷, 谭香玉, 黄柳娜, 等. 消化道肿瘤免疫抑制性微环境研究进展[J]. koko体育app 学报(医学版), 2022, 53(1): 7-14. doi: 10.12182/20220160501
引用本文: 李宇婷, 谭香玉, 黄柳娜, 等. 消化道肿瘤免疫抑制性微环境研究进展[J]. koko体育app 学报(医学版), 2022, 53(1): 7-14. doi:
LI Yu-ting, TAN Xiang-yu, HUANG Liu-na, et al. Research Progress in Immunosuppressive Tumor Microenvironment of Gastrointestinal Cancer[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(1): 7-14. doi: 10.12182/20220160501
Citation: LI Yu-ting, TAN Xiang-yu, HUANG Liu-na, et al. Research Progress in Immunosuppressive Tumor Microenvironment of Gastrointestinal Cancer[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(1): 7-14. doi:


基金项目: 国家自然科学基金面上项目(No. 81772957)、广东省组织器官区域免疫与疾病重点实验室项目(No. 2019B030301009)和深圳市工信局双链项目(No. 20180309100135860)资助


Research Progress in Immunosuppressive Tumor Microenvironment of Gastrointestinal Cancer

More Information
  • 摘要: 消化道肿瘤(gastrointestinal cancer, GI)是我国常见高发的恶性肿瘤,随着其发病率的日益升高和愈发年轻化的趋势,新的治疗技术也在不断发展和创新,其中免疫疗法正在引领消化道肿瘤治疗新时代。然而,免疫抑制性肿瘤微环境(tumor microenvironment, TME)的复杂性和多样性给消化道实体瘤的免疫治疗增添了重重阻碍。本综述以消化道实体肿瘤为切入点,回顾了影响其免疫抑制性微环境形成的主要因素,概述了靶向免疫抑制微环境治疗的策略,分析了各类免疫联合疗法的协同机制,总结了消化道恶性肿瘤患者免疫治疗的最新进展和未来方向,旨在为消化道实体瘤的免疫治疗提供新思路。
  • koko体育app

    图  1  消化道肿瘤免疫抑制性微环境的组成模式图

    Figure  1.  🥂 A schematic illustration of the immunosuppressive tumor microenvironment in gastrointestinal cancer

    MDSCs: Myeloid-derived suppressor cells; VEGF: Vascular endothelial growth factor; CTL: Cytotoxic T lymphocytes; Th1: Effector T helper 1 cells; Th17: Effector T helper 17 cells; Tregs: Regulatory T cells; DCs: Dendritic cells; TAMs: Tumor-associated macrophages; TANs: Tumour-associated neutrophils; CSCs: Cancer stem cells; CTLA4: Cytotoxic T lymphocyte antigen 4; TIM3: T cell immunoglobulin and mucin domain-containin protein 3; PD1: Programmed cell death protein 1; IDO: Indoleamine 2,3-dioxygenase; IL: Interleukin; ROS: Reactive oxygen species; TGF-β: Transforming growth factor-β; CXCL12: C-X-C motif chemokine ligand 12; CXCR4: C-X-C motif chemokine receptor 4.

    图  2  消化道肿瘤免疫抑制性微环境的腺苷通路图

    Figure  2.  ♎ Adenosinergic pathway in the immunosuppressive tumor microenvironment in gastrointestinal cancer

    FOXP3: Forkhead box P3; LAG3: Lymphocyte activation gene 3; IFN-γ: Interferon-γ; TNF: Tumour necrosis factor; TCR: T cell receptor; ATP: Adenosine triphosphate; PKA: Protein kinase A; cAMP: Cyclic AMP; HIF1A: Hypoxia-inducible factor 1A; NF-κB: Nuclear factor-κB; MHC Ⅱ: Major histocompatibility complex class Ⅱ; TLR4: Toll-like receptor 4.

    图  3  靶向消化道肿瘤免疫抑制微环境的治疗策略模式图

    Figure  3.  ๊ Immunosuppressive TME-based therapeutical strategies in gastrointestinal cancer

    HDAC: Histone deacetylase; TRAILR2: TNF-related apoptosis-inducing ligand receptor 2; TLR9: Toll like receptor 9.
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] SHALAPOUR S, KARIN M. Cruel to be kind: Epithelial, microbial, and immune cell interactions in gastrointestinal cancers. Annu Rev Immunol,2020,38: 649–671. doi:
    [2] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin,2021,71(3): 209–249. doi:
    [3] QUANTE M, VARGA J, WANG T C, et al. The gastrointestinal tumor microenvironment. Gastroenterology,2013,145(1): 63–78. doi:
    [4] JOYCE J A, FEARON D T. T cell exclusion, immune privilege, and the tumor microenvironment. Science,2015,348(6230): 74–80. doi:
    [5] BARKER H E, PAGET J T, KHAN A A, et al. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer,2015,15(7): 409–425. doi:
    [6] HANAHAN D, WEINBERG R A. Hallmarks of cancer: The next generation. Cell,2011,144(5): 646–674. doi:
    [7] ZHANG Y, XU J, ZHANG N, et al. Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett,2019,458: 123–135. doi:
    [8] DAVERN M, DONLON N E, POWER R, et al. The tumour immune microenvironment in oesophageal cancer. Br J Cancer,2021,125(4): 479–494. doi:
    [9] BINNEWIES M, ROBERTS E W, KERSTEN K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med,2018,24(5): 541–550. doi:
    [10] NAGARSHETH N, WICHA M S, ZOU W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol,2017,17(9): 559–572. doi:
    [11] OLLAURI-IBÁÑEZ C, AYUSO-ÍÑIGO B, PERICACHO M. Hot and cold tumors: is endoglin (cd105) a potential target for vessel normalization? Cancers (Basel), 2021, 13(7): 1552[2022-12-20]. .
    [12] GAO H, MA J, CHENG Y, et al. Exosomal transfer of macrophage-derived miR-223 confers doxorubicin resistance in gastric cancer. Onco Targets Ther,2020,13: 12169–12179. doi:
    [13] SAHAI E, ASTSATUROV I, CUKIERMAN E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer,2020,20(3): 174–186. doi:
    [14] BIFFI G, TUVESON D A. Diversity and biology of cancer-associated fibroblasts. Physiol Rev,2021,101: 147–176. doi:
    [15] MORTEZAEE K. Enriched cancer stem cells, dense stroma, and cold immunity: Interrelated events in pancreatic cancer. J Biochem Mol Toxicol, 2021, 35(4): e22708[2022-12-20]. .
    [16] ERIN N, GRAHOVAC J, BROZOVIC A, et al. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat, 2020, 53: 100715[2022-12-20]. .
    [17] LIN C C, LIAO T T, YANG M H. Immune adaptation of colorectal cancer stem cells and their interaction with the tumor microenvironment. Front Oncol, 2020, 10: 588542[2022-12-20]. .
    [18] LIAO T T, LIN C C, JIANG J K, et al. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics,2020,10(14): 6095–6112. doi:
    [19] HUI E, CHEUNG J, ZHU J, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science,2017,355(6332): 1428–1433. doi:
    [20] ZHAO H K, WU L, YAN G F, et al. Inflammation and tumor progression: Signaling pathways and targeted intervention, Signal Transduct Target Ther, 2021, 6(1): 263[2022-12-20]. .
    [21] RAHMA O E, HODI F S. The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res,2019,25(18): 5449–5457. doi:
    [22] FLEMING C, MORRISSEY S, CAI Y, et al. γδ T cells: Unexpected regulators of cancer development and progression. Trends Cancer,2017,3(8): 561–570. doi:
    [23] HUANG T X, TAN X Y, HUANG H S, et al. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut, 2021: gutjnl-2020-322924[2022-12-20]. .
    [24] GONÇALVES-RIBEIRO S, DÍAZ-MAROTO N G, BERDIEL-ACER M, et al. Carcinoma-associated fibroblasts affect sensitivity to oxaliplatin and 5-FU in colorectal cancer cells. Oncotarget,2016,7(37): 59766–59780. doi:
    [25] NAKAMURA K, YAGUCHI T, OHMURA G, et al. Involvement of local renin-angiotensin system in immunosuppression of tumor microenvironment. Cancer Sci,2018,109(1): 54–64. doi:
    [26] HAM I H, OH H J, JIN H, et al. Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol Cancer, 2019, 18(1): 68[2022-12-20]. .
    [27] 赵昆, 时荣臣, 缪洪明. 肿瘤相关巨噬细胞的脂质代谢重编程. koko体育app 学报(医学版),2021,52(1): 45–49. doi:
    [28] XIANG X N, WANG J G, LU D, et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther, 2021, 6(1): 75[2022-12-20]. .
    [29] LI X, YAO W, YUAN Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut,2017,66(1): 157–167. doi:
    [30] ALDINUCCI D, CASAGRANDE N. Inhibition of the CCL5/CCR5 axis against the progression of gastric cancer. Int J Mol Sci, 2018, 19(5): 1477[2022-12-20]. .
    [31] SUAREZ-CARMONA M, CHAORENTONG P, KATHER J N, et al. CCR5 status and metastatic progression in colorectal cancer. Oncoimmunology, 2019, 8(9): e1626193[2022-12-20]. .
    [32] OKUGAWA Y, TOIYAMA Y, ICHIKAWA T, et al. Colony-stimulating factor-1 and colony-stimulating factor-1 receptor co-expression is associated with disease progression in gastric cancer. Int J Oncol,2018,53(2): 737–749. doi:
    [33] HIAM-GALVEZ K J, ALLEN B M, SPITZER M H. Systemic immunity in cancer. Nat Rev Cancer,2021,21(6): 345–359. doi:
    [34] LIMAGNE E, EUVRARD R, THIBAUDIN M, et al. Accumulation of mdsc and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a folfox-bevacizumab drug treatment regimen. Cancer Res,2016,76(18): 5241–5252. doi:
    [35] ZHANG X, SHEN L, LIU Q, et al. Inhibiting PI3 kinase-γ in both myeloid and plasma cells remodels the suppressive tumor microenvironment in desmoplastic tumors. J Control Release,2019,309: 173–180. doi:
    [36] ZAPPASODI R, SERGANOVA I, COHEN I J, et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature,2021,591(7851): 652–658. doi:
    [37] KANIKARLA P, HAYMAKER C, PARRA E R, et al. Pilot clinical trial of perioperative durvalumab and tremelimumab in the treatment of resectable colorectal cancer liver metastases. Clin Cancer Res,2021,27(11): 3039–3049. doi:
    [38] ZHANG L, SUN L, ZHOU Y, et al. Association of survival and immune-related adverse events with anti-PD-1/PD-l1 and anti-CTLA-4 inhibitors, alone or their combination for the treatment of cancer: A systematic review and meta-analysis of 13 clinical trials. Front Oncol, 2021, 11: 575457[2022-12-20]. .
    [39] CHAUVIN J M, ZAROUR H M. TIGIT in cancer immunotherapy. J Immunother Cancer, 2020, 8(2): e000957[2022-12-20]. .
    [40] QI Y, CHEN L, LIU Q, et al. Research progress concerning dual blockade of lymphocyte-activation gene 3 and programmed death-1/programmed death-1 ligand-1 blockade in cancer immunotherapy: Preclinical and clinical evidence of this potentially more effective immunotherapy strategy. Front Immunol, 2021, 11: 563258[2022-12-20]. .
    [41] ABDUL-LATIF M, TOWNSEND K, DEARMAN C, et al. Immunotherapy in gastrointestinal cancer: The current scenario and future perspectives. Cancer Treat Rev, 2020, 88: 102030[2022-12-20]. .
    [42] CIOFFI M, TRABULO S, HIDALGO M, et al. Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms. Clin Cancer Res,2015,21(10): 2325–2337. doi:
    [43] WANG Y, CHEN M, WU Z, et al. CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial. Oncoimmunology, 2018, 7(7): e1440169[2022-12-20]. .
    [44] LIU Z, ZHAO Q, ZHENG Z, et al. Vascular normalization in immunotherapy: a promising mechanisms combined with radiotherapy. Biomed Pharmacother, 2021, 139: 111607[2022-12-20]. .
    [45] O’HARA M H, O’REILLY E M, ROSEMARIE M, et al. Abstract CT004: A Phase Ib study of CD40 agonistic monoclonal antibody APX005M together with gemcitabine (Gem) and nab-paclitaxel (NP) with or without nivolumab (Nivo) in untreated metastatic ductal pancreatic adenocarci- noma (PDAC) patients. Cancer Res,2019,79(13 Suppl): CT004. doi:
    [46] FUKUMURA D, KLOEPPER J, AMOOZGAR Z, et al. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol,2018,15(5): 325–340. doi:
    [47] CLARA J A, MONGE C, YANG Y, et al. Targeting signalling pathways and the immune microenvironment of cancer stem cells—A clinical update. Nat Rev Clin Oncol,2020,17(4): 204–232. doi:
    [48] GANDHI L, RODRÍGUEZ-ABREU D, GADGEEL S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med,2018,378(22): 2078–2092. doi:
  • 加载中
  • 文章访问数:  265
  • HTML全文浏览量:  107
  • PDF下载量:  101
  • 被引次数: 0
  • 收稿日期:  2022-09-20
  • 修回日期:  2022-12-21
  • 网络出版日期:  2023-01-24
  • 刊出日期:  2023-01-24



    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!