koko体育app

欢迎来到《koko体育app 学报(医学版)》
非打码RNA与天生免疫系统网络信号调节

仇学梅 李鑫 刘锐

仇学梅, 李鑫, 刘锐. 非编码RNA与先天免疫信号调控[J]. koko体育app 学报(医学版), 2022, 53(1): 20-27. doi: 10.12182/20220160202
引用本文: 仇学梅, 李鑫, 刘锐. 非编码RNA与先天免疫信号调控[J]. koko体育app 学报(医学版), 2022, 53(1): 20-27. doi:
QIU Xue-mei, LI Xin, LIU Rui. Non-Coding RNA and Innate Immune Signal Regulation[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(1): 20-27. doi: 10.12182/20220160202
Citation: QIU Xue-mei, LI Xin, LIU Rui. Non-Coding RNA and Innate Immune Signal Regulation[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(1): 20-27. doi:

非编码RNA与先天免疫信号调控

doi: 
基金项目: 四川省科技厅项目(No. 2020YFSY0009)资助
详细信息
    通讯作者:

    E-mail: liurui_scu@hotmail.com

Non-Coding RNA and Innate Immune Signal Regulation

More Information
  • 摘要: 先天免疫对消除和控制感染至关重要,但不受控制的免疫反应可损伤宿主组织。机体免疫稳态的调节是一个精确的、复杂的过程,其中,非编码RNA是多种生物过程中的重要调控因子。目前研究表明微小RNA、长链非编码RNA通过调控先天免疫途径中的基因表达参与抗病毒反应、肿瘤免疫及自身免疫性疾病。通常情况下,微小RNA通过与mRNA的3′端非翻译区结合,在转录后水平调节基因表达,而长链非编码RNA则作为微小RNA的内源竞争RNA,抑制微小RNA与信使RNA的结合,发挥免疫调控作用。本综述总结了非编码RNA在先天免疫中的调节作用及其机制,为先天免疫的调节及免疫相关疾病的研究提供参考。同时,koko体育app 也展望了该领域未来的研究方向,包括新型非编码RNA的表达与成熟调控机制,以及非编码RNA在进化中的保守性等。
  • koko体育app

    图  1  非编码RNA的生物合成

    Figure  1.  Biosynthesis of non-coding RNA

    miRNA: MicroRNA; mRNA: Messenger RNA; circRNA: Circular RNA; lncRNA: Long non-coding RNA; piRNA: PIWI-interacting RNA; tRNA: Transfer RNA; tsRNA: Transfer RNA-derived small RNA.

    图  2  ncRNA调控IRF3

    Figure  2.  🌃 The regulatory mechanism of ncRNA on IRF3

    TLR: Toll-like receptor; TIR: Toll/IL-1R; TIRAP: TIR domain containing adaptor protein; IRAKs: IL-1 receptor associated kinase; TRAF: Tumor necrosis factor receptor-associated factor; IKKs: Inhibitor of NF-κB kinase complex; MAPKs: Mitogen-activated protein kinases; TBK1: TANK-binding kinase 1; IKKi: Inducible IκB Kinase; RIP1: Receptor-interacting protein 1; TAK1: Transforming growth factor β-activated kinase 1; TRAM: TRIF-related adaptor molecule; TRIF: TIR-domain-containing adaptor protein inducing IFN-β; OPTN: Optineurin; IRF: Interferon regulatory factor; PP2A: Protein phosphatase 2A; IFN: Interferon.

    表  1  ncRNA调控先天免疫的机制

    Table  1.   ౠ Mechanism of ncRNA in regulating innate immunity

    Components of
    innate immunity
    Regulation mechanism of ncRNA
    IRF ① miRNA: Directly binds to the 3′UTR of IRF mRNA and inhibits its expression[26]; indirectly inhibits phosphorylation of  IRF[27]; inhibits the expression of upstream molecules of IRF, thereby inhibiting IRF[28].
    ② lncRNA: Competitively binds to miRNA to inhibit the binding of miRNA to target gene, thereby blocking miRNA function[29]; competes with IRF3 to bind to the IFN-β promoter, interfering with the binding of IRF3 and IFN-β[30]; binds to TBK1 kinase ubiquitination adaptor OPTN and stabilizes OPTN, promoting TLR-TBK1-dependent IRF3 phosphorylation[31].
    TRIF ① miRNA: Directly binds to the 3′UTR of TRIF mRNA and inhibits its expression[32].
    ② circRNA: Interacts with miRNA as a competitive endogenous RNA of TRIF mRNA[32].
    RIG-Ⅰ ① miRNA: Inhibits the expression of RIG-Ⅰ ubiquitination regulator TRIM25, thereby inhibiting the ubiquitination of RIG-Ⅰ[33]; targets the 3′UTR of RIG-Ⅰ encoding gene DDX58 to inhibit the expression of RIG-Ⅰ[34]; functions as ligand of RIG-Ⅰ, thereby contributing to immune enhancement[35].
    ② lncRNA: Competitively binds to the CTD of RIG-Ⅰ with viral RNA and limits its protein conformational changes, leaving RIG-Ⅰ in an inactive state[36]; eliminates SFPQ’s transcription inhibitory effect on RIG-Ⅰ[37].
    MAVS ① miRNA: Directly binds to the 3′UTR of MAVS mRNA and inhibits its expression[38]; indirectly regulates MAVS by targeting mitochondrial transporter[39].
    ② lncRNA: Competitively binds to miRNA, thereby blocking miRNA function[40].
    cGAS ① miRNA: Directly binds to the 3′UTR of cGAS mRNA and inhibits its expression[41]; suppresses the mRNA level of cGAS by acting on epigenetic factors that maintain the expression of cGAS[42].
    ② lncRNA: Indirectly regulates the cGAS pathway by participating in the assembly of the HDP-RNP[3].
    STING ① miRNA: Directly binds to the 3′UTR of STING mRNA and inhibits its expression[43].
    ② lncRNA: Indirectly regulates STING transcription through CREB[44].
     ncRNA: Non-coding RNA; IRF: Interferon regulatory factor; miRNA: MicroRNA; 3′UTR: 3′ untranslated regions; lncRNA: Long non-coding RNA; IFN-β: Interferon-β; TBK1: TANK-bindingkinase; OPTN: Optineurin; TLR: Toll-like receptor; TRIF: TIR-domain-containing adaptor inducing interferon-β; circRNA: Circular RNA; RIG-Ⅰ: Retinoic acid‐inducible gene Ⅰ; TRIM25: Tripartite motif-containing protein 25; CTD: C-terminal domain; SFPQ: Splicing factor proline-and glutamine-rich protein; MAVS: Mitochondrial antiviral signaling; cGAS: Cyclic GMP-AMP synthase; HDP-RNP: HEXIM1-DNA-PK-paraspeckle components-ribonu-cleoprotein complex; STING: Stimulator of interferon genes; CREB: cAMP response element-binding protein.
    下载: 导出CSV
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] SLACK F J, CHINNAIYAN A M. The role of non-coding RNAs in oncology. Cell,2019,179(5): 1033–1055. doi:
    [2] WANG J, ZHU S, MENG N, et al. ncRNA-encoded peptides or proteins and cancer. Mol Ther,2019,27(10): 1718–1725. doi:
    [3] MORCHIKH M, CRIBIER A, RAFFEL R, et al. HEXIM1 and NEAT1 long non-coding RNA form a multi-subunit complex that regulates DNA-mediated innate immune response. Mol Cell, 2017, 67(3): 387-399.e385[2022-08-21]. .
    [4] SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell,2011,146(3): 353–358. doi:
    [5] HUANG X, FEJES TÓTH K, ARAVIN A A. piRNA biogenesis in drosophila melanogaster. Trends Genet,2017,33(11): 882–894. doi:
    [6] CHEN X, YANG T, WANG W, et al. Circular RNAs in immune responses and immune diseases. Theranostics,2019,9(2): 588–607. doi:
    [7] KIM J K, KIM T S, BASU J, et al. MicroRNA in innate immunity and autophagy during mycobacterial infection. Cell Microbiol, 2017, 19(1): e12687[2022-08-21]. .
    [8] WANG Y, WANG Y, LUO W, et al. Roles of long non-coding RNAs and emerging RNA-binding proteins in innate antiviral responses. Theranostics,2020,10(20): 9407–9424. doi:
    [9] QIN X W, HE J, YU Y, et al. The roles of mandarin fish STING in innate immune defense against infectious spleen and kidney necrosis virus infections. Fish Shellfish Immunol, 2020, 100: 80−89[2022-08-21]. .
    [10] VISHNOI A, RANI S. MiRNA biogenesis and regulation of diseases: An overview. Methods Mol Biol, 2017, 1509: 1−10[2022-08-21]. .
    [11] ZHU J, FU H, WU Y, et al. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci,2013,56(10): 876–885. doi:
    [12] QU S, YANG X, LI X, et al. Circular RNA: A new star of noncoding RNAs. Cancer Lett,2015,365(2): 141–148. doi:
    [13] OZATA D M, GAINETDINOV I, ZOCH A, et al. Piwi-interacting RNAs: Small RNAs with big functions. Nat Rev Genet,2019,20(2): 89–108. doi:
    [14] ZHU L, LI J, GONG Y, et al. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer, 2019, 18(1): 74[2022-08-21]. .
    [15] PARK J, AHN S H, SHIN M G, et al. TRNA-derived small RNAs: Novel epigenetic regulators. Cancers (Basel), 2020, 12(10): 2773[2022-08-21]. .
    [16] THAISS C A, ZMORA N, LEVY M, et al. The microbiome and innate immunity. Nature,2016,535(7610): 65–74. doi:
    [17] THAISS C A, LEVY M, ITAV S, et al. Integration of innate immune signaling. Trends Immunol,2016,37(2): 84–101. doi:
    [18] VIDYA M K, KUMAR V G, SEJIAN V, et al. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. Int Rev Immunol,2018,37(1): 20–36. doi:
    [19] MAHARJAN A S, PILLING D, GOMER R H. Toll-like receptor 2 agonists inhibit human fibrocyte differentiation. Fibrogenesis Tissue Repair, 2010, 3: 23[2022-08-21]. .
    [20] PARK S R, KIM D J, HAN S H, et al. Diverse toll-like receptors mediate cytokine production by fusobacterium nucleatum and aggregatibacter actinomycetemcomitans in macrophages. Infect Immun,2014,82(5): 1914–1920. doi:
    [21] VÁZQUEZ-MENDOZA A, CARRERO J C, RODRIGUEZ-SOSA M. Parasitic infections: A role for C-type lectins receptors. Biomed Res Int, 2013, 2013: 456352[2022-08-21]. .
    [22] LIU B, GAO C. Regulation of MAVs activation through post-translational modifications. Curr Opin Immunol, 2018, 50: 75−81[2022-08-21]. .
    [23] CASTANIER C, ZEMIRLI N, PORTIER A, et al. MAVs ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type Ⅰ interferon production after activation of the antiviral RIG-Ⅰ-like receptors. BMC Biol, 2012, 10: 44[2022-08-21]. .
    [24] GRAY E E, WINSHIP D, SNYDER J M, et al. The AIM2-like receptors are dispensable for the interferon response to intracellular DNA. Immunity,2016,45(2): 255–266. doi:
    [25] HORNUNG V, HARTMANN R, ABLASSER A, et al. OAS proteins and cGAS: Unifying concepts in sensing and responding to cytosolic nucleic acids. Nat Rev Immunol,2014,14(8): 521–528. doi:
    [26] LI Z, CHEN B, FENG M, et al. MicroRNA-23b promotes avian leukosis virus subgroup j (ALV-j) replication by targeting IRF1. Sci Rep, 2015, 5: 10294[2022-08-21]. .
    [27] LEE Y S, BAO X, LEE H H, et al. Nc886, a novel suppressor of the type Ⅰ interferon response upon pathogen intrusion. Int J Mol Sci, 2021, 22(4): 2003[2022-08-21]. .
    [28] TANG Y, LUO X, CUI H, et al. MicroRNA-146a contributes to abnormal activation of the type Ⅰ interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum,2009,60(4): 1065–1075. doi:
    [29] ZHENG W, CHU Q, XU T. The long noncoding RNANARL regulates immune responses via microRNA-mediated NOD1 downregulation in teleost fish. J Biol Chem, 2021. 296: 100414[2022-08-21]. .
    [30] LI X, GUO G, LU M, et al. Long noncoding RNA lnc-MXA inhibits beta interferon transcription by forming RNA-DNA triplexes at its promoter. J Virol, 2019, 93(21): e00786−19[2022-08-21]. .
    [31] AZNAOUROVA M, JANGA H, SEFRIED S, et al. Noncoding RNA MAIL1 is an integral component of the TLR4-TRIF pathway. Proc Natl Acad Sci U S A,2020,117(16): 9042–9053. doi:
    [32] ZHENG W, CHU Q, YANG L, et al. Circular RNA circDtx1 regulates IRF3-mediated antiviral immune responses through suppression of mir-15a-5p-dependent TRIF downregulation in teleost fish. PLoS Pathog, 2021, 17(3): e1009438[2022-08-21]. .
    [33] LIU W, JIN Y, ZHANG W, et al. MiR-202-5p inhibits RIG-Ⅰ-dependent innate immune responses to rgnnv infection by targeting TRIM25 to mediate RIG-Ⅰ ubiquitination. Viruses, 2020, 12(3): 261[2022-08-21]. .
    [34] QIU Y, GENG X, BAN J, et al. MicroRNA-218 inhibits type Ⅰ interferon production and facilitates virus immune evasion via targeting RIG-Ⅰ. Biotechnol Appl Biochem,2020,67(3): 396–403. doi:
    [35] NAM R K, BENATAR T, AMEMIYA Y, et al. MiR-139 induces an interferon-β response in prostate cancer cells by binding to RIG-Ⅰ. Cancer Genomics Proteomics,2021,18(3): 197–206. doi:
    [36] JIANG M, ZHANG S, YANG Z, et al. Self-recognition of an inducible host lncRNA by RIG-Ⅰ feedback restricts innate immune response. Cell, 2018, 173(4): 906−919.e913[2022-08-21]. .
    [37] MA H, HAN P, YE W, et al. The long noncoding RNA NEAT1 exerts anti-hantaviral effects by acting as positive feedback for RIG-Ⅰ signaling. J Virol, 2017, 91(9): e02250−16[2022-08-21]. .
    [38] XU T, CHU Q, CUI J, et al. Inducible microRNA-3570 feedback inhibits the RIG-Ⅰ-dependent innate immune response to rhabdovirus in teleost fish by targeting MAVs/IPS-1. J Virol, 2018, 92(2): e01594−17[2022-08-21]. .
    [39] YASUKAWA K, KINOSHITA D, YAKU K, et al. The microRNAs miR-302b and miR-372 regulate mitochondrial metabolism via the SLC25A12 transporter, which controls MAVs-mediated antiviral innate immunity. J Biol Chem,2020,295(2): 444–457. doi:
    [40] CHU Q, XU T, ZHENG W, et al. Long noncoding RNA MARL regulates antiviral responses through suppression miR-122-dependent MAVs downregulation in lower vertebrates. PLoS Pathog, 2020, 16(7): e1008670[2022-08-21]. .
    [41] YU Q, CHU L, LI Y, et al. MiR-23a/b suppress cGAS-mediated innate and autoimmunity. Cell Mol Immunol,2021,18(5): 1235–1248. doi:
    [42] WU M Z, CHENG W C, CHEN S F, et al. MiR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol,2017,19(10): 1286–1296. doi:
    [43] XU T, CHU Q, CUI J. Rhabdovirus-inducible microRNA-210 modulates antiviral innate immune response via targeting STING/MITA in fish. J Immunol,2018,201(3): 982–994. doi:
    [44] CHEN J H, FENG D D, CHEN Y F, et al. Long non-coding RNAMALAT1 targeting STING transcription promotes bronchopulmonary dysplasia through regulation of CREB. J Cell Mol Med,2020,24(18): 10478–10492. doi:
    [45] NEGISHI H, TANIGUCHI T, YANAI H. The interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harb Perspect Biol, 2018, 10(11): a028423[2022-08-21]. .
    [46] ZHANG B C, ZHOU Z J, SUN L. Pol-miR-731, a teleost mirna upregulated by megalocytivirus, negatively regulates virus-induced type Ⅰ interferon response, apoptosis, and cell cycle arrest. Sci Rep, 2016, 6: 28354[2022-08-21]. .
    [47] DAI P, CAO H, MERGHOUB T, et al. Myxoma virus induces type Ⅰ interferon production in murine plasmacytoid dendritic cells via a TLR9/myd88-, IRF5/IRF7-, and IFNAR-dependent pathway. J Virol,2011,85(20): 10814–10825. doi:
    [48] O’NEILL L A, BOWIE A G. The family of five: TIR-domain-containing adaptors in toll-like receptor signalling. Nat Rev Immunol,2007,7(5): 353–364. doi:
    [49] LI Y G, SIRIPANYAPHINYO U, TUMKOSIT U, et al. Poly (i: C), an agonist of toll-like receptor-3, inhibits replication of the chikungunya virus in BEAS-2B cells. Virol J, 2012, 9: 114[2022-08-21]. .
    [50] LIN W, ZHANG J, LIN H, et al. Syndecan-4 negatively regulates antiviral signalling by mediating RIG-Ⅰ deubiquitination via CYLD. Nat Commun, 2016, 7: 11848[2022-08-21]. .
    [51] HEIDEGGER S, WINTGES A, STRITZKE F, et al. RIG-Ⅰ activation is critical for responsiveness to checkpoint blockade. Sci Immunol, 2019, 4(39): eaau8943[2022-08-21]. .
    [52] KARLSEN T A, BRINCHMANN J E. Liposome delivery of microRNA-145 to mesenchymal stem cells leads to immunological off-target effects mediated by RIG-Ⅰ. Mol Ther,2013,21(6): 1169–1181. doi:
    [53] YASUKAWA K, KOSHIBA T. Mitochondrial reactive zones in antiviral innate immunity. Biochim Biophys Acta Gen Subj, 2021, 1865(3): 129839[2022-08-21]. .
    [54] ZHANG Z D, XIONG T C, YAO S Q, et al. RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVs and MITA. Nat Commun, 2020, 11(1): 5536[2022-08-21]. .
    [55] HSU A C, DUA K, STARKEY M R, et al. MicroRNA-125a and -b inhibit a20 and MAVs to promote inflammation and impair antiviral response in COPD. JCI Insight, 2017, 2(7): e90443[2022-08-21]. .
    [56] YAN J, ZHANG Y, SU Y, et al. MicroRNA-125a targets MAVs and TRAF6 to modulate interferon signaling and promote HCV infection. Virus Res, 2021, 296: 198336[2022-08-21]. .
    [57] WAN S, ASHRAF U, YE J, et al. MicroRNA-22 negatively regulates poly(i: C)-triggered type Ⅰ interferon and inflammatory cytokine production via targeting mitochondrial antiviral signaling protein (MAVs). Oncotarget,2016,7(47): 76667–76683. doi:
    [58] HOU P, WANG H, ZHAO G, et al. MiR-3470b promotes bovine ephemeral fever virus replication via directly targeting mitochondrial antiviral signaling protein (MAVs) in baby hamster syrian kidney cells. BMC Microbiol, 2018, 18(1): 224[2022-08-21]. .
    [59] SUN L, WU J, DU F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type Ⅰ interferon pathway. Science,2013,339(6121): 786–791. doi:
    [60] SHEN A, ZHENG D, LUO Y, et al. MicroRNA-24-3p alleviates hepatic ischemia and reperfusion injury in mice through the repression of STING signaling. Biochem Biophys Res Commun,2020,522(1): 47–52. doi:
    [61] KHAN M, HARMS J S, LIU Y, et al. Brucella suppress STING expression via miR-24 to enhance infection. PLoS Pathog, 2020, 16(10): e1009020[2022-08-21]. .
    [62] SU H, ZHENG W, PAN J, et al. Circular RNA circSamd4a regulates antiviral immunity in teleost fish by upregulating STING through sponging miR-29a-3p. J Immunol,2021,207(11): 2770–2784. doi:
    [63] ZHOU Y, LI M, XUE Y, et al. Interferon-inducible cytoplasmic lncLrrc55-AS promotes antiviral innate responses by strengthening IRF3 phosphorylation. Cell Res,2019,29(8): 641–654. doi:
    [64] FAN J, CHENG M, CHI X, et al. A human long non-coding RNA lncATV promotes virus replication through restricting RIG-Ⅰ-mediated innate immunity. Front Immunol, 2019, 10: 1711[2022-08-21]. .
    [65] XIA P, WANG S, YE B, et al. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity, 2018, 48(4): 688−701.e687[2022-08-21]. .
    [66] WU Q, NING X, SUN L. Megalocytivirus induces complicated fish immune response at multiple RNA levels involving mRNA, miRNA, and circRNA. Int J Mol Sci, 2021, 22(6): 3156[2022-08-21]. .
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  114
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-20
  • 修回日期:  2022-12-09
  • 网络出版日期:  2023-01-24
  • 刊出日期:  2023-01-24

目录

    /

    返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!