-
摘要: 2019冠状病毒病(coronavirus disease 2019, COVID-19,我国通称新型冠状病毒肺炎,简称新冠肺炎)是由严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)引起的一种以肺部病变为主的呼吸道传染病,自2019年暴发后引起全球性大流行,对公共卫生及民众健康造成严重威胁。Ⅰ型干扰素(interferon, IFN)是宿主固有免疫系统的重要组成部分,在抵御病毒感染过程中发挥着非常重要的作用。病毒和固有免疫系统的博弈,往往决定感染后的疾病进程。研究显示,SARS-CoV-2病毒能通过与宿主免疫系统之间相互作用,抑制IFN的产生及IFN通路的激活;而Ⅰ型IFN反应减弱或延迟,引起宿主免疫应答的紊乱,是造成SARS-CoV-2高发病率和高死亡率的重要原因之一。本文讨论了SARS-CoV-2编码的病毒蛋白与宿主固有免疫系统之间,特别是Ⅰ型IFN通路之间的相互作用,以期为病毒逃逸宿主免疫应答机制及临床上IFN治疗COVID-19提供新思路和新策略。
-
关键词:
- 严重急性呼吸综合征冠状病毒2 /
- 病毒蛋白 /
- 干扰素通路 /
- 病毒-宿主相互作用
Abstract: Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic since its outbreak in 2019, presenting serious threats to public health and the health of the people. As one of the main components of the host innate immune system, type-Ⅰ interferon (IFN) plays a critical role in the defense against viral infections. The battle between the virus and the host innate immune system determines the disease progression. It has been reported that SARS-CoV-2 inhibits IFN production and suppresses the activation of IFN signaling pathway through its interactions with the host innate immune system. Then, the weakened or delayed response of type-Ⅰ interferon causes the disturbance of host immune responses, which is one of the important reasons why SARS-CoV-2 causes such high morbidity and mortality. Herein, we reviewed and discussed the interaction between SARS-CoV-2 viral proteins and the host innate immune system, especially the interaction with type-Ⅰ IFN pathway, to provide new insights into the mechanisms of viral evasion of host immune response and new perspectives and strategies for treating COVID-19 with IFN. -
koko体育app
图 1 SARS-CoV-2病毒蛋白对Ⅰ型IFN及下游Jak/STAT通路的拮抗作用
Figure 1. The antagonistic effect of SARS-CoV-2 viral protei🔯ns on t𓄧ype-Ⅰ IFN and Jak/STAT pathway
ACE2: Angiotensin converting enzyme 2; TRIM25: Tripartite motif containing 25; CARD: Caspase activation and recruitment domain; RIG-Ⅰ: Retinoic acid-inducible gene-Ⅰ; Nsp: Non-structural protein; MAVS: Mitochondrial antiviral signaling protein; IKKε: IκB kinases ε; TBK1: TANK-binding kinase 1; NF-κB: Nuclear factor kappa-B; IRF: Interferon regulatory factors; ORF: Open reading frame; IFN: Interferon; IFNAR1 and IFNAR2: IFN-alpha/beta receptor 1 and 2; Jak1: Janus kinase-1; Tyk2: Tyrosine kinase 2; STAT1/2: Signal transducer and activator of transcription 1 and 2; ISG15: Interferon-stimulated gene 15; MxA: Human myxovirus resistant protein A; ISRE: Interferon sensitive response element; RNAseL: Ribonuclease L. -
[1] LIU S, CAI X, WU J, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 2015, 347(6227): aaa2630[2022-08-15]. . [2] AMOR S, FERNÁNDEZ BLANCO L, BAKER D. Innate immunity during SARS‐CoV‐2: evasion strategies and activation trigger hypoxia and vascular damage. Clin Exp Immunol,2020,202(2): 193–209. doi: [3] SA RIBERO M, JOUVENET N, DREUX M, et al. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog, 2020, 16(7): e1008737[2022-08-15]. . [4] SHEMESH M, AKTEPE T E, DEERAIN J M, et al. SARS-CoV-2 suppresses IFNβ production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon. PLoS Pathog, 2021, 17(8): e1009800[2022-08-15]. . [5] BLANCO-MELO D, NILSSON-PAYANT B E, LIU W C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 2020, 181(5): 1036-1045. e9[2022-08-15]. . [6] WU J, SHI Y, PAN X, et al. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Rep, 2021, 34(7): 108761[2022-08-15]. . [7] YIN X, RIVA L, PU Y, et al. MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep, 2021, 34(2): 108628[2022-08-15]. . [8] FAJGENBAUM D C, JUNE C H. Cytokine storm. N Engl J Med,2020,383(23): 2255–2273. doi: [9] HADJADJ J, YATIM N, BARNABEI L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science,2020,369(6504): 718–724. doi: [10] V’KOVSKI P, KRATZEL A, STEINER S, et al. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol,2021,19(3): 155–170. doi: [11] FELGENHAUER U, SCHOEN A, GAD H H, et al. Inhibition of SARS–CoV-2 by type I and type Ⅲ interferons. J Biol Chem,2020,295(41): 13958–13964. doi: [12] GORDON D E, JANG G M, BOUHADDOU M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature,2020,583(7816): 459–468. doi: [13] YUEN C K, LAM J Y, WONG W M, et al. SARS-CoV-2 NSP13, NSP14, NSP15 AND ORF6 function as potent interferon antagonists. Emerg Microbes Infect,2020,9(1): 1418–1428. doi: [14] LEI X, DONG X, MA R, et al. Activation and evasion of type Ⅰ interferon responses by SARS-CoV-2. Nat Commun, 2020, 11(1): 3810[2022-08-15]. . [15] XIA H, CAO Z, XIE X, et al. Evasion of type Ⅰ interferon by SARS-CoV-2. Cell Rep, 2020, 33(1): 108234[2022-08-15]. . [16] HAYN M, HIRSCHENBERGER M, KOEPKE L, et al. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep, 2021, 35(7): 109126[2022-08-15]. . [17] BANERJEE A K, BLANCO M R, BRUCE E A, et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell, 2020, 183(5): 1325-1339. e21[2022-08-15]. . [18] THOMS M, BUSCHAUER R, AMEISMEIER M, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science,2020,369(6508): 1249–1255. doi: [19] SCHUBERT K, KAROUSIS E D, JOMAA A, et al. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol,2020,27(10): 959–966. doi: [20] KUMAR A, ISHIDA R, STRILETS T, et al. SARS-CoV-2 nonstructural protein 1 inhibits the interferon response by causing depletion of key host signaling factors. J Virol, 2021, 95(13): e0026621[2022-08-15]. . [21] LAPOINTE C P, GROSELY R, JOHNSON A G, et al. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A, 2021, 118(6): e2017715118[2022-08-15]. . [22] HSU J C C, LAURENT-ROLLE M, PAWLAK J B, et al. Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proc Natl Acad Sci U S A, 2021, 118(24): e2101161118[2022-08-15]. . [23] FAN J B, ARIMOTO K, MOTAMEDCHABOKI K, et al. Identification and characterization of a novel ISG15-ubiquitin mixed chain and its role in regulating protein homeostasis. Sci Rep, 2015, 5: 12704[2022-08-15]. . doi: . [24] KLEMM T, EBERT G, CALLEJA D J, et al. Mechanism and inhibition of the papain‐like protease, PLpro, of SARS‐CoV‐2. EMBO J, 2020, 39(18): e106275[2022-08-15]. . [25] SHIN D, MUKHERJEE R, GREWE D, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature,2020,587(7835): 657–662. doi: [26] MOUSTAQIL M, OLLIVIER E, CHIU H P, et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect,2021,10(1): 178–195. doi: [27] RUSSO L C, TOMASIN R, MATOS I A, et al. The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signalling. J Biol Chem, 2021, 297(3): 10104[2022-08-15]. . [28] CLAVERIE J M. A putative role of de-mono-ADP-ribosylation of STAT1 by the SARS-CoV-2 Nsp3 protein in the cytokine storm syndrome of COVID-19. Viruses, 2020, 12(6): 646[2022-08-15]. . [29] WU Y, MA L, ZHUANG Z, et al. Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type Ⅰ interferon antiviral signaling. Signal Transduct Target Ther, 2020, 5(1): 221[2022-08-15]. . [30] GORI SAVELLINI G, ANICHINI G, GANDOLFO C, et al. SARS-CoV-2 N protein targets TRIM25-mediated RIG-Ⅰ activation to suppress innate immunity. Viruses, 2021, 13(8): 1439: [2022-08-15]. . [31] ZHAO Y, SUI L, WU P, et al. A dual-role of SARS-CoV-2 nucleocapsid protein in regulating innate immune response. Signal Transduct Target Ther, 2021, 6(1): 331[2022-08-15]. . [32] LI J Y, LIAO C H, WANG Q, et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type Ⅰ interferon signaling pathway. Virus Res, 2020, 286: 198074[2022-08-15]. . [33] CHEN K, XIAO F, HU D, et al. SARS-CoV-2 nucleocapsid protein interacts with RIG-Ⅰ and represses RIG-mediated IFN-β production. Viruses, 2021, 13(1): 47[2022-08-15]. . [34] MIORIN L, KEHRER T, SANCHEZ-APARICIO M T, et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci U S A,2020,117(45): 28344–28354. doi: [35] MU J, FANG Y, YANG Q, et al. SARS-CoV-2 N protein antagonizes type Ⅰ interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2. Cell Discov, 2020, 6: 65[2022-08-15]. . doi: . [36] JIANG H W, ZHANG H N, MENG Q F, et al. SARS-CoV-2 Orf9b suppresses type Ⅰ interferon responses by targeting TOM70. Cell Mol Immunol,2020,17(9): 998–1000. doi: [37] ZHENG Y, ZHUANG M W, HAN L, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type Ⅰ and Ⅲ interferon production by targeting RIG-I/MDA-5 signaling. Signal transduct Target Ther, 2020, 5(1): 299[2022-08-15]. . [38] FU Y Z, WANG S Y, ZHENG Z Q, et al. SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. Cell Mol Immunol,2021,18(3): 613–620. doi: [39] SUI L, ZHAO Y, WANG W, et al. SARS-CoV-2 membrane protein inhibits type Ⅰ interferon production through ubiquitin-mediated degradation of TBK1. Front Immunol, 2021, 12: 662989[2022-08-15]. . [40] RAO Y L, WANG T Y, QIN C, et al. Targeting CTP synthetase 1 to restore interferon induction and impede nucleotide synthesis in SARS-CoV-2 infection. bioRxiv, 2021, 12: 429959[2022-08-15]. . [41] KONNO Y, KIMURA I, URIU K, et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell Rep, 2020, 32(12): 108185[2022-08-15]. . [42] WANG W, ZHOU Z, XIAO X, et al. SARS-CoV-2 nsp12 attenuates type Ⅰ interferon production by inhibiting IRF3 nuclear translocation. Cell Mol Immunol,2021,18(4): 945–953. doi: [43] LI A, ZHAO K, ZHANG B, et al. SARS-CoV-2 NSP12 protein is not an interferon-β antagonist. J Virol, 2021, 95(17): e0074721[2022-08-15]. . [44] WANG N, ZHAN Y, ZHU L, et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe, 2020, 28(3): 455-464. e2[2022-08-15]. . [45] HUNG I F N, LUNG K C, TSO E Y K, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet,2020,395(10238): 1695–1704. doi: [46] LU F. SARS-CoV-2 ORF9c: A mysterious membrane-anchored protein that regulates immune evasion? Nat Rev Immunol, 2020, 20(11): 648[2022-08-15]. . -