koko体育app

欢迎来到《koko体育app 学报(医学版)》
SARS-CoV-2与宿主细胞僵板免疫细胞机系统的彼此之间反应

段晓琼 谢鹤 陈利民

段晓琼, 谢鹤, 陈利民. SARS-CoV-2与宿主固有免疫系统的相互作用[J]. koko体育app 学报(医学版), 2022, 53(1): 1-6. doi: 10.12182/20220160101
引用本文: 段晓琼, 谢鹤, 陈利民. SARS-CoV-2与宿主固有免疫系统的相互作用[J]. koko体育app 学报(医学版), 2022, 53(1): 1-6. doi:
DUAN Xiao-qiong, XIE He, CHEN Li-min. Interaction between SARS-CoV-2 and Host Innate Immunity[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(1): 1-6. doi: 10.12182/20220160101
Citation: DUAN Xiao-qiong, XIE He, CHEN Li-min. Interaction between SARS-CoV-2 and Host Innate Immunity[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2022, 53(1): 1-6. doi:

SARS-CoV-2与宿主固有免疫系统的相互作用

doi: 
基金项目: 国家自然科学基金委中德科学中心新冠病毒中德合作应急专项项目(No.C-0029)资助
详细信息
    通讯作者:

    E-mail:limin_chen_99@126.com

Interaction between SARS-CoV-2 and Host Innate Immunity

More Information
  • 摘要: 2019冠状病毒病(coronavirus disease 2019, COVID-19,我国通称新型冠状病毒肺炎,简称新冠肺炎)是由严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)引起的一种以肺部病变为主的呼吸道传染病,自2019年暴发后引起全球性大流行,对公共卫生及民众健康造成严重威胁。Ⅰ型干扰素(interferon, IFN)是宿主固有免疫系统的重要组成部分,在抵御病毒感染过程中发挥着非常重要的作用。病毒和固有免疫系统的博弈,往往决定感染后的疾病进程。研究显示,SARS-CoV-2病毒能通过与宿主免疫系统之间相互作用,抑制IFN的产生及IFN通路的激活;而Ⅰ型IFN反应减弱或延迟,引起宿主免疫应答的紊乱,是造成SARS-CoV-2高发病率和高死亡率的重要原因之一。本文讨论了SARS-CoV-2编码的病毒蛋白与宿主固有免疫系统之间,特别是Ⅰ型IFN通路之间的相互作用,以期为病毒逃逸宿主免疫应答机制及临床上IFN治疗COVID-19提供新思路和新策略。
  • koko体育app

    图  1  SARS-CoV-2病毒蛋白对Ⅰ型IFN及下游Jak/STAT通路的拮抗作用

    Figure  1.  𝕴 The antagonistic effect of SARS-CoV-2 viral proteins on type-Ⅰ IFN and Jak/STAT pathway

    ACE2: Angiotensin converting enzyme 2; TRIM25: Tripartite motif containing 25; CARD: Caspase activation and recruitment domain; RIG-Ⅰ: Retinoic acid-inducible gene-Ⅰ; Nsp: Non-structural protein; MAVS: Mitochondrial antiviral signaling protein; IKKε: IκB kinases ε; TBK1: TANK-binding kinase 1; NF-κB: Nuclear factor kappa-B; IRF: Interferon regulatory factors; ORF: Open reading frame; IFN: Interferon; IFNAR1 and IFNAR2: IFN-alpha/beta receptor 1 and 2; Jak1: Janus kinase-1; Tyk2: Tyrosine kinase 2; STAT1/2: Signal transducer and activator of transcription 1 and 2; ISG15: Interferon-stimulated gene 15; MxA: Human myxovirus resistant protein A; ISRE: Interferon sensitive response element; RNAseL: Ribonuclease L.
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!
  • [1] LIU S, CAI X, WU J, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 2015, 347(6227): aaa2630[2022-08-15]. .
    [2] AMOR S, FERNÁNDEZ BLANCO L, BAKER D. Innate immunity during SARS‐CoV‐2: evasion strategies and activation trigger hypoxia and vascular damage. Clin Exp Immunol,2020,202(2): 193–209. doi:
    [3] SA RIBERO M, JOUVENET N, DREUX M, et al. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog, 2020, 16(7): e1008737[2022-08-15]. .
    [4] SHEMESH M, AKTEPE T E, DEERAIN J M, et al. SARS-CoV-2 suppresses IFNβ production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon. PLoS Pathog, 2021, 17(8): e1009800[2022-08-15]. .
    [5] BLANCO-MELO D, NILSSON-PAYANT B E, LIU W C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 2020, 181(5): 1036-1045. e9[2022-08-15]. .
    [6] WU J, SHI Y, PAN X, et al. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Rep, 2021, 34(7): 108761[2022-08-15]. .
    [7] YIN X, RIVA L, PU Y, et al. MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep, 2021, 34(2): 108628[2022-08-15]. .
    [8] FAJGENBAUM D C, JUNE C H. Cytokine storm. N Engl J Med,2020,383(23): 2255–2273. doi:
    [9] HADJADJ J, YATIM N, BARNABEI L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science,2020,369(6504): 718–724. doi:
    [10] V’KOVSKI P, KRATZEL A, STEINER S, et al. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol,2021,19(3): 155–170. doi:
    [11] FELGENHAUER U, SCHOEN A, GAD H H, et al. Inhibition of SARS–CoV-2 by type I and type Ⅲ interferons. J Biol Chem,2020,295(41): 13958–13964. doi:
    [12] GORDON D E, JANG G M, BOUHADDOU M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature,2020,583(7816): 459–468. doi:
    [13] YUEN C K, LAM J Y, WONG W M, et al. SARS-CoV-2 NSP13, NSP14, NSP15 AND ORF6 function as potent interferon antagonists. Emerg Microbes Infect,2020,9(1): 1418–1428. doi:
    [14] LEI X, DONG X, MA R, et al. Activation and evasion of type Ⅰ interferon responses by SARS-CoV-2. Nat Commun, 2020, 11(1): 3810[2022-08-15]. .
    [15] XIA H, CAO Z, XIE X, et al. Evasion of type Ⅰ interferon by SARS-CoV-2. Cell Rep, 2020, 33(1): 108234[2022-08-15]. .
    [16] HAYN M, HIRSCHENBERGER M, KOEPKE L, et al. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep, 2021, 35(7): 109126[2022-08-15]. .
    [17] BANERJEE A K, BLANCO M R, BRUCE E A, et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell, 2020, 183(5): 1325-1339. e21[2022-08-15]. .
    [18] THOMS M, BUSCHAUER R, AMEISMEIER M, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science,2020,369(6508): 1249–1255. doi:
    [19] SCHUBERT K, KAROUSIS E D, JOMAA A, et al. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol,2020,27(10): 959–966. doi:
    [20] KUMAR A, ISHIDA R, STRILETS T, et al. SARS-CoV-2 nonstructural protein 1 inhibits the interferon response by causing depletion of key host signaling factors. J Virol, 2021, 95(13): e0026621[2022-08-15]. .
    [21] LAPOINTE C P, GROSELY R, JOHNSON A G, et al. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A, 2021, 118(6): e2017715118[2022-08-15]. .
    [22] HSU J C C, LAURENT-ROLLE M, PAWLAK J B, et al. Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proc Natl Acad Sci U S A, 2021, 118(24): e2101161118[2022-08-15]. .
    [23] FAN J B, ARIMOTO K, MOTAMEDCHABOKI K, et al. Identification and characterization of a novel ISG15-ubiquitin mixed chain and its role in regulating protein homeostasis. Sci Rep, 2015, 5: 12704[2022-08-15]. . doi: .
    [24] KLEMM T, EBERT G, CALLEJA D J, et al. Mechanism and inhibition of the papain‐like protease, PLpro, of SARS‐CoV‐2. EMBO J, 2020, 39(18): e106275[2022-08-15]. .
    [25] SHIN D, MUKHERJEE R, GREWE D, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature,2020,587(7835): 657–662. doi:
    [26] MOUSTAQIL M, OLLIVIER E, CHIU H P, et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect,2021,10(1): 178–195. doi:
    [27] RUSSO L C, TOMASIN R, MATOS I A, et al. The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signalling. J Biol Chem, 2021, 297(3): 10104[2022-08-15]. .
    [28] CLAVERIE J M. A putative role of de-mono-ADP-ribosylation of STAT1 by the SARS-CoV-2 Nsp3 protein in the cytokine storm syndrome of COVID-19. Viruses, 2020, 12(6): 646[2022-08-15]. .
    [29] WU Y, MA L, ZHUANG Z, et al. Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type Ⅰ interferon antiviral signaling. Signal Transduct Target Ther, 2020, 5(1): 221[2022-08-15]. .
    [30] GORI SAVELLINI G, ANICHINI G, GANDOLFO C, et al. SARS-CoV-2 N protein targets TRIM25-mediated RIG-Ⅰ activation to suppress innate immunity. Viruses, 2021, 13(8): 1439: [2022-08-15]. .
    [31] ZHAO Y, SUI L, WU P, et al. A dual-role of SARS-CoV-2 nucleocapsid protein in regulating innate immune response. Signal Transduct Target Ther, 2021, 6(1): 331[2022-08-15]. .
    [32] LI J Y, LIAO C H, WANG Q, et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type Ⅰ interferon signaling pathway. Virus Res, 2020, 286: 198074[2022-08-15]. .
    [33] CHEN K, XIAO F, HU D, et al. SARS-CoV-2 nucleocapsid protein interacts with RIG-Ⅰ and represses RIG-mediated IFN-β production. Viruses, 2021, 13(1): 47[2022-08-15]. .
    [34] MIORIN L, KEHRER T, SANCHEZ-APARICIO M T, et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci U S A,2020,117(45): 28344–28354. doi:
    [35] MU J, FANG Y, YANG Q, et al. SARS-CoV-2 N protein antagonizes type Ⅰ interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2. Cell Discov, 2020, 6: 65[2022-08-15]. . doi: .
    [36] JIANG H W, ZHANG H N, MENG Q F, et al. SARS-CoV-2 Orf9b suppresses type Ⅰ interferon responses by targeting TOM70. Cell Mol Immunol,2020,17(9): 998–1000. doi:
    [37] ZHENG Y, ZHUANG M W, HAN L, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type Ⅰ and Ⅲ interferon production by targeting RIG-I/MDA-5 signaling. Signal transduct Target Ther, 2020, 5(1): 299[2022-08-15]. .
    [38] FU Y Z, WANG S Y, ZHENG Z Q, et al. SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. Cell Mol Immunol,2021,18(3): 613–620. doi:
    [39] SUI L, ZHAO Y, WANG W, et al. SARS-CoV-2 membrane protein inhibits type Ⅰ interferon production through ubiquitin-mediated degradation of TBK1. Front Immunol, 2021, 12: 662989[2022-08-15]. .
    [40] RAO Y L, WANG T Y, QIN C, et al. Targeting CTP synthetase 1 to restore interferon induction and impede nucleotide synthesis in SARS-CoV-2 infection. bioRxiv, 2021, 12: 429959[2022-08-15]. .
    [41] KONNO Y, KIMURA I, URIU K, et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell Rep, 2020, 32(12): 108185[2022-08-15]. .
    [42] WANG W, ZHOU Z, XIAO X, et al. SARS-CoV-2 nsp12 attenuates type Ⅰ interferon production by inhibiting IRF3 nuclear translocation. Cell Mol Immunol,2021,18(4): 945–953. doi:
    [43] LI A, ZHAO K, ZHANG B, et al. SARS-CoV-2 NSP12 protein is not an interferon-β antagonist. J Virol, 2021, 95(17): e0074721[2022-08-15]. .
    [44] WANG N, ZHAN Y, ZHU L, et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe, 2020, 28(3): 455-464. e2[2022-08-15]. .
    [45] HUNG I F N, LUNG K C, TSO E Y K, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet,2020,395(10238): 1695–1704. doi:
    [46] LU F. SARS-CoV-2 ORF9c: A mysterious membrane-anchored protein that regulates immune evasion? Nat Rev Immunol, 2020, 20(11): 648[2022-08-15]. .
  • 加载中
图(1)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  107
  • PDF下载量:  1216
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-17
  • 修回日期:  2022-11-27
  • 网络出版日期:  2023-01-24
  • 刊出日期:  2023-01-24

目录

    /

    返回文章
    返回
    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?90c4d9819bca8c9bf01e7898dd269864"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); koko体育-koko体育app koko体育-koko体育网页版koko体育app koko体育-全站app下载(官网) m6米乐app|下载 m6米乐app|主頁欢迎您!!